德國VSERS400流量計辦事處同時我們還經營:1.計量原理 流體通過渦輪流量計時,流速被轉換為渦輪的轉速,轉速再被轉換成與流量成正比的電信號,最后在計數器上進行顯示和累計。目前,絕大多數渦輪流量計都為一體化智能流量計,除上述機械計量部分外,還包括1臺體積計算儀,依據實測工況流量、取壓口實測壓力、測溫口實測溫度及內部設定的一些固定參數進行計算,將工況體積轉換為可貿易交接的天然氣體積,其原理如圖1所示。2換算原理2.1工作條件下的體積流量計算實用公式工作條件下的體積流量計算實用公式如式(1)所示:式(1)中,qf為工作條件下的體積流量,m3/s;f為輸出工作頻率,Hz,由頻率計采集;k為系數,m-³,可按流量計銘牌給定值。2.2標準參比條件下的體積流量換算實用公式標準參比條件下的體積流量換算實用公式如式(2)所示:式(2)中,qn為標準參比條件下的體積流量,m3/s;pf為工作條件下的絕對靜壓力,MPa;pn為標準參比條件下的絕對靜壓力,MPa;Tn為標準參比條件下的熱力學溫度,K;Tf為工作條件下的氣體絕對溫度,K;Zn為標準參比條件下的氣體壓縮因子;Zf為工作條件下的氣體壓縮因子?! 」ぷ鳁l件下的壓力和溫度的準確度取決于測量儀表。標準參比條件下的絕對靜壓力為101.325kPa,熱力學溫度為293.15K。輸出工作頻率由頻率計采集得到。在不考慮渦輪流量計測量誤差的基礎上,研究范圍可進一步縮小,可主要從天然氣組分對計量的影響和脈動流對計量的影響兩方面進行研究。1.儀表安裝不符合要求造成計量誤差 旋進漩渦流量計的使用過程中,最關鍵的是要保障計量的精度,安裝質量是影響計量準確性、運行可靠性的重要因素。在實際的安裝過程中,現場的安裝人員往往會存在安裝的不規范行為,而這種情況會導致計量的準確性不足,比如,在安裝現場,儀表前后管線存在縮徑現象,過近的安裝距離會導致最終的計量結果偏大,計量與實際的誤差非常大。此外,在安裝過程中,安裝人員的專業素質偏低,在實際的安裝過程中,缺乏安裝全過程的質量控制、細節管理,同樣會造成嚴重的計量偏差。2.被測氣量不穩定造成計量誤差 旋進漩渦流量計的計量介質性質相對特殊,如果在實際的計量過程中,被測氣量難以保持穩定性,將會影響計量結果的準確性。旋進漩渦流量計的運行過程中,存在著較大的壓力損失,當在單井計量的過程中,伴隨著一定氣流量的產生,由于在此情況下氣源的氣體量相對較小,一旦氣壓降低到特定的值時,旋進漩渦流量計就無法及時將氣量準確計量出來。在一些特殊的情況下,氣量會隨著時間呈現出或大或小的變動,而這種不穩定的變動趨勢使得計量的難度系數增大,當屬于脈動流體時,在計量過程中一旦出現隨機脈動壓力,將會對流量計造成一定的沖擊,進而導致計量的精度不足。3.管線振動造成儀表誤差 當流量很小的情況下,旋進漩渦流量計的計量結果難以保障。在實際的計量過程中,常常會存在工藝管道的振動現象,一旦在流速較小的情況下,流量計的儀表難以保持正常的輸出狀態,計量精度大大降低。旋進漩渦流量計使用過程中最常見的問題就是計量誤差,這種誤差常常是由多種因素所造成的,管線振動是其中的一個關鍵因素,當管線出現異常情況時,壓電傳感器能夠活動振蕩變化所引起的各種參數變化,此時,必然伴隨著信號的輸出,也就難以保障計量結果的準確性。4.不干凈的測量流體介質造成計量誤差 隨著旋進漩渦流量計計量工作的開展,在流量計內必然會伴隨著大量油污等雜物的存在,有時甚至會存在腐蝕與損壞現象,而這些情況會導致在計量過程中出現酸化與壓裂現象的概率進一步增大,導致計量值遠低于實際值。旋進漩渦流量計的計量工作中,要保障介質的潔凈性,否則,一旦介質中存在飽和水蒸汽,當遇到溫度過低的情況時,將會伴隨著水凝結現象的出現。在計量過程中,如果計量分離器存在氣路跑油的情況,在管線內會形成大量的積液;如果介質內存在污油、砂粒等雜質,在計量的過程中,可能會出現漩渦發生體表面雜質的黏結現象,最終影響計量結果的準確性。1、孔板流量計包括3部分:①現場取壓部分,包括高級孔板閥、前后直管段、導壓管;②溫度、壓力、組分補償部分,包括現場用溫度變送器、壓力變送器、天然氣組分分析儀計量的實時數據;③流量計算部分,指專用流量計算機(或計算儀)所安裝的計量標準程序。 2、在實際應用過程中,當充滿管道的流體流經管道內的節流件時,如圖1所示。 流線將在節流件處形成局部收縮,因而流速增加,靜壓力降低,于是在節流件前后便產生了壓差。流體流量愈大,產生的壓差愈大,這樣可依據壓差來:衡量流量的大小。這種計量方法是以流動連續性方程(質量守恒定律)和伯努利方程(能量守恒定律)為基礎的。壓差的大小不僅與流量還與其他許多因素有關,例如當節流裝置形式或管道內流體的物理性質(密度、粘度)不同時,在同樣大小的流量下產生的壓差也是不同的。以伯努利方程式和流體流動的連續性方程式為依據,天然氣流量計算公式是: 根據氣體易壓縮、密度差異大、受溫度影響大的特點,得出天然氣流量計量的實用公式是:式中:Qn一標準狀態下氣體體積流量; Ah一常數,標況下為0.008686; ɑ0一特定流量系數; Yre一計量管內壁流量修正系數; bk一孔板流量計入口邊緣銳利度修正系數; Fr一雷諾數修正系數;. ε一氣體膨脹系數; d-孔板在20°C下實測的開孔口徑; Fa一孔板熱膨脹修正系數; Fg一天然氣相對密度修正系數; Fz一超壓縮系數; Ft一流體流動溫度修正系數; P1一孔板上游側絕對壓力; hw一氣體流過孔板時的差壓。1.渦輪流量計的始動流量值qvmin很大程度上取決于軸和葉輪前后軸承間的機械摩擦阻力矩7b,而它是由軸承與軸的微小間隙內流體與固體壁面的粘性摩擦引起的,且內部流體可認為始終處于層流狀態。Tb越小,qvmin也越小,因此為了使渦輪流量傳感器在小流量測量范圍內能夠體現良好測量性能,最重要的是要減少軸和軸承之間的機械摩擦。2.流體介質密度ρ與qvmin值成反比,ρ越大,則qvmin越小。液體密度受溫度影響不大,相比之下溫度的變化會較大程度改變氣體密度,所以測量氣體時要留意溫度因素,以防引起傳感器特性曲線的變化。3.同樣條件下,葉片安裝角β越大,則qvmin越小?! ‘敱粶y流體流量大于qvmin后,流量繼續增加會使葉輪旋轉角速度加快,此時流體因素阻力矩與機械摩擦阻力矩相比占據主要地位,故可認為Tb=0。由于流體流動狀態不盡相同,而渦輪流量計傳感器實際的特性曲線受流體流動狀態影響.1)測量電磁流量計勵磁線圈的電阻值,以確定勵磁線圈是否有匝間短路(線路編號“7”和“8”之間的電阻),電阻值應在30歐姆之間和170歐姆。如果電阻與工廠記錄相同,則認為線圈良好,并且不間接評估電磁流量計傳感器的磁場強度。2)測量勵磁線圈對地的絕緣電阻(測量編號“1”和“7”或“8”),以確定傳感器是否潮濕,電阻值應大于20兆歐。3)測量電極和液體之間的接觸電阻(測量數字“1”和“2”和“1”和“3”),并間接評估電極和襯里層表面的一般狀況。如果電極表面和背襯層附著到沉積層,則沉積層是導電的還是絕緣的。它們之間的電阻應在1千歐和1兆歐之間,線號“1”和“2”以及“1”和“3”的電阻值應大致對稱。4)關閉管道上的閥門,當電磁流量計充滿液體且液體不流動時,檢查整個機器的零點。根據需要進行適當調整。5)檢查信號線和激勵線各芯線的絕緣電阻,檢查屏蔽層是否完好。6)使用GS8校準儀測試電磁流量計轉換器的輸出電流。當給定零流量時,輸出電流應為:4.00 mA;當給定100%流量時,輸出電流應為:20.00 mA。輸出電流值的誤差應優于1.5%。7)測試勵磁電流值(轉換器端子“7”和“8”之間),正負勵磁電流應在規定范圍內,約為137(5%)mA。德國VSERS400流量計辦事處 考慮到容積式流量測量裝置結構較復雜,安裝維護和校準不方便,有必要在滿足精度和抗震.性能要求的前提下,采用安裝和維護方便的其他形式流量測量儀表。熱式氣體質量流量計已在氣體流量測量領域獲得了成功的應用,具有無可動部件、壓損小及量程比寬等特點,例如在核電廠的通風系統中,已成功地替代皮托管成為重要的測量方式。但在液位流量測量領域,熱式質量流量計的應用仍具有局限性。 由式(2)可知,熱絲的熱散失率與流體的熱導率、比熱容、流速和密度有關。相對于通風系統中的空氣來說,水是-種具有較大比熱容、較大密度和熱導率的介質。在相同的流速下,水帶走的熱量遠大于空氣,對于以恒定功率加熱熱端鉑電阻的恒功率型熱式質量流量計,為了適應水流量的測量,加熱電路會采用比較高的加熱功率為熱端鉑電阻進行加熱;對于恒溫差型的熱式質量流量計,為了維持兩個鉑電阻之間恒定的溫差,加熱電路同樣會處于比較高的加熱功率狀態下,且加熱功率將隨水流量的增大而增大。因而,無論是恒功率型還是恒溫差型,加熱功率的提高會對流量計的安全性和壽命有很大的影響,也使其應用環境造成一定的局限性。而恒比率式流量計由于通過調節施加在熱端熱電阻上的加熱電流,使熱端熱電阻的阻值與冷端熱電阻的阻值成一恒定比率,因而同恒溫差式流量計相比,在測量相同流速流體的情況下,恒比率式流量計熱端鉑電阻的加熱電流要小于恒溫差式,因而其加熱功率不會過高而產生儀表安全性和使用壽命方面的不利影響。對于主泵第三級密封泄漏流這種微小流量的測量,相對于恒功率式和恒溫差式,恒比率式熱式質量流量計具有更好的應用價值,然而對于較大液體流量的測量則并不適用。恒比率式流量計的熱端鉑電阻加熱電流Ih與介質質量流量m的關系為: 式中Ap-一流體流經管道的截面積; As一傳感器參與熱交換部分的表面積; C1、C2一通過校準確定的常數; d一熱電阻傳感器直徑; k一流體熱導率; Ls一傳感器損耗能量的因數; n一校準過程中通過回歸確定的指數; Pr一流體的普朗特數; Rc一冷端鉑電阻阻值; Rco一冷端鉑電阻在0℃時的阻值; RH一熱端鉑電阻阻值; RH0一熱端鉑電阻在0C時的阻值;, r一恒比率參數(自加熱系數),r= a一鉑電阻的參數。 1.基本性能 熱式質量流量計作為一種直接測量質量流量的智能型流量儀表,具有結構簡單、體積小、數字化程度高及安裝方便等優點。熱式質量流量計的.測量精度一般約為±1%,重復性為±0.2%;量程比寬可達100:1,最高可達1000:1;在-40~60℃的環境溫度下可正常工作;可耐受3MPa或更高的管道壓力;允許介質工作溫度-70~400℃;允許被測液體的流速為0~4m/s;支持HART協議。另外,具有壓損小、直管段要求低和允許動態修正的特點,其響應時間較長,未采用特殊設計時可達幾秒。熱式質量流量計具有一體式和分體式兩種.結構,在累積輻照劑量較大區域,可采用分體式流量計進行測量,信號處理部分布置于累積輻照劑量較小區域。 主泵第三級密封泄漏流正常工況下在5L/h左右,達到50L/h時報警,不用于過程控制。在電廠正常運行工況下,測點所在區域的環境溫度約為50℃以下,工作壓力小于0.6MPa,工作溫度小于100℃,要求測量范圍的量程比約為30:1,屬于非1E級測點。因此,就測量要求而言,熱式質量流量計適用于主泵第三級密封泄漏流量的測量。 2.抗震性能 由于主泵第三級密封泄漏流測點位于安全殼內,周圍存在1E級儀表和核級管道,盡管測點本身不需要在設計基準事件工況下執行功能,但不應對其他需要執行功能的設備或儀表造成損害,因而用于該測點的儀表應滿足抗震要求,在SSE地震載荷下,滿足結構完整性的要求,避免放射性物質經儀表破口向環境釋放以及對周圍1E級儀表和核級設備產生潛在危害。 熱式質量流量計結構簡單,除進行抗震試驗外,抗震分析亦可用于分析其抗震性能。在抗震分析中,需要重點對薄弱部位進行應力分析,通常包括傳感器與管道相交的節點處、螺紋連接處及法蘭連接處等位置。 對某一型號熱式氣體質量流量計進行抗震分析,取三向峰值加速度為6g。通過應力分析表明,流量計的第一-階自振頻率大于33Hz,在地震載荷作用下,薄弱部位的計算應力值均小于規定的應力限值,從而認為其在SSE地震載荷下,結構完整性可以得到保證。 3.耐輻照性能 因主泵第三級密封泄漏流測點位于安全殼內,在電廠正常運行工況下,探頭所處的環境具有一定的電離輻射存在。因而,用于該測點的儀表應能經受--定的累積輻照劑量而測量結果仍在要求的測量精度范圍內。目前,對于儀表的耐輻照性能,主要采用試驗法進行驗證。 對某一型號分體式熱式質量流量計探頭進行耐輻照試驗,輻射源采用鈷-60,試驗時間持續40h以上,累積輻照劑量約2x104Gy,輻照后進行功能試驗,流量計的輸出維持在測量精度范圍內,表明該型流量計可以經受若干年的累積輻照劑量而不損壞。 4.安裝 為便于安裝和維護,流量計可采用法蘭-法蘭連接的形式。在一般情況下,為了滿足測量精度,熱式質量流量計對于前后直管段的要求較高,部分型號的流量計要求的直管段長度可達到前15D、后5D以上。但由于流量計允許動態修正,經過標定和修正后,可降低熱式質量流量計的前后直管段要求。對于主泵第三級密封泄漏流的測量,熱式質量流量計可滿足安裝和維護要求??装辶髁坑嬍抢昧黧w的動靜壓能轉換原理進行流量測量的,這一-差壓與流體流量存在如下關系: 式中:qm為質量流量,kg/h;qv為工況條件下的體積流量,m³/h;x為流量系數;e為流束膨脹系數;△e為差壓,Pa;Q為工況條件下被測流體的密度,kg/m³;d為工況條件下的節流開孔直徑,mm。由(1)式和(2)式可以看出,被測流體的流量是流體的密度和孔板前后差壓的函數。當測得某一差壓時,由于所測流體的密度不同,所代表的流量是不同的,只有當流體的密度值等于孔板流量計設計條件中的密度值時,差壓才能真實反映所測的流量。蒸汽從發生到使用,由于熱損耗,溫度和壓力的下降是不可避免的,導致其密度與設計值的差異,從而產生了誤差,并且隨著蒸汽參數的波動而波動,實際測量時只能通過溫壓補償來修正,補償公式的嚴謹性直接影響測量誤差。由于超聲波流量計傳感器的安裝位置,被測管路的狀態對測量精度有很大影響,因此請選擇滿足下列條件的場所。1.管道圓度好,內表面光滑,管壁均勻。2.上游側5D,下游側3D以上的直管段,注“D為管道內徑”。3.被測管路必須充滿液體。4.必須有足夠的空間易于傳感器的安裝與操作。5.在水平的被測管路,傳感器不應裝在管道的頂部和底部,并避開管道凹凸不平及有焊縫處。超聲波流量計傳感器的安裝1.在已定的安裝位置周圍比傳感器約大一倍的面積上,將管壁上的油漆、鐵銹、污垢等清除干凈,擦凈露出金屬應無凹凸不平。2.將緊固件安裝在管道上,用不銹鋼帶將其固定在管道上,不應松動。3.鋪設好電纜由電纜接入孔接到接線盒中的接線端子上。4.每個傳感器換能器正面,涂上一厚層耦合劑(黃油)后,將傳感器換能器面與管壁接觸,放置在緊固組件中,并用壓緊蓋板將傳感器壓緊,耦合劑應從傳感器四周的縫隙中擠出,形成一道密封條。緊固螺銓鈕緊,注意四個螺銓用力要均勻,不要使傳感器偏移。根據流量計設計要實現的功能,智能金屬管浮子流量計的硬件系統實現方案如圖2.1所示:本系統主要分為三部分:信號采集模塊、信號處理模塊以及輸出和顯示模塊,下面將對這三個模塊進行簡要介紹。(1)信號采集模塊:此模塊用來實現信號采集功能,系統中核心要采集的是流量信號,除此之外,還需要采集溫度和壓力信號。這是因為當被測流體為蒸汽時,其密度隨溫度和壓力的變化而變化。為了準確計算出流體的流量,必須要考慮溫度和壓力變化對流體密度的影響。因此,設計中要實現流量、溫度以及壓力三種信號的采集。(2)信號處理模塊:信號處理模塊的基本功能是實現信號的放大、濾波以及A/D轉換。此外,系統中采用微控制器MSP430F149對采集信號進行計算、補償,線性化等智能化處理。(3)輸出及顯示模塊:設計中使用E2PR0M保存累積流量值以及儀表參數值,并將流量信號轉換為4?20mA工業標準電流信號輸出。同時,使用LCD實時顯示瞬時流量和累積流量,最后將金屬管浮子流量計測量結果通過CAN總線傳送給上位機顯示。智能電磁流量計與其他傳統模擬或非智能電磁流量計有非常大的區別,尤其在測量精度可靠性、穩定性、可以修改流量計量程、使用功能和使用壽命等方面。電磁流量計設計了帶背光寬溫的中文液晶顯示器,功能齊全實用、顯示直觀、操作使用方便?! ≈悄茈姶帕髁坑嬤m用測量封閉管道中導電液體和漿液的體積流量,如潔凈水、污水、各種酸堿鹽溶液、泥漿、礦漿、紙漿、糖漿及食品方面的液體等?! ≈悄茈姶帕髁坑嬍怯蓚鞲衅髋c轉換器兩個部分組成,對于一體式智能電磁流量計選型方法,與工況三要素離不開,從測量的介質,測量的溫度壓力,測量的流量范圍三個方面說起。1、什么是介質 介質就是智能電磁流量計所要測量的流體,在管道中流動的物體,稱之為介質。介質又可分多種,在管道中,所有的介質都要清楚地了解,這樣才可以選擇適應現場工況的智能電磁流量計。2、溫度壓力是什么 溫度壓力是指管道中的溫度及管道中的壓力,壓力等級的大小與溫度的大小,會直接影響到智能電磁流量計的選型,因此選型時,一定要確認管道中的壓力與溫度范圍。3、量程是什么 量程是指智能電磁流量計的測量范圍可以滿足現場的要求,這個數據是比較重要的,量程太大或太小,都對一體式智能電磁流量計有直接的影響,甚至無法使用。出現孔板流量計反向安裝這種情況的原因有二:1.操作人員未進行崗前培訓,技術不熟練,不熟悉工藝流程走向;2.由于操作人員在更換孔板,清洗檢查節流裝置,進行工藝改造安裝時,或在進行訓練的過程中,粗心大意,現場監督,檢驗不到位等.出現此情況時,孔板下游銳角邊經緣朝向上游,其結果將直接影響計量偏低,反映在現場是差壓下降一個臺階,而由于現場原因未能及時發現并糾正.其引起流量偏低的影響率,據國外實驗研究資料數據為-12%~-17%,一般情況下,雷諾數不變時,高β值與低β值之間的流量偏差值為±2%,管徑雷諾數越低,其流量偏差越大?! 〈送?在更換孔板以后,其配套產量計算參數必須同步更換,否則會出現相當大的正負偏差,若由小孔徑換大孔徑,參數未更換,則流量計量將偏高;反之,流量計量將偏低,在日輸氣量大的用戶計量中,造成的損失將是很大,甚至是難以彌補的?! 囊陨戏治?我們不難看出,孔板流量計反向安裝,參數的錯誤是可以通過操作人員認真仔細的操作,培訓來杜絕的,在天然氣商品貿易結算中,是絕對不允許有此現象發生的,所以制定一套科學的嚴格的現場計量監督制度是很有必要且很重要的。德國VSERS400流量計辦事處智能電磁流量計離不開良好的顯示界面。我們采用128*64的圖形點陣液晶顯示模塊來顯示累積流量、瞬時流量等數據信息。液晶顯示模塊(LCM),是將液晶顯示器件、驅動及控制電路、以及溫度補償、驅動電源、背光等輔助電路組合在一起的一種相對獨立的顯示器件和設備。通常液晶顯示器件本身引線眾多,而且要將這些引線與驅動、控制等電路連接才能用于顯示信息,因此生產廠家在制造液晶顯示器件的同時,也將與之對應的驅動、控制等電路做成PCB板,然后用壓框和導帶或導電橡膠將液晶顯示器件固定在PCB板上,從而組合形成液晶顯示模塊。圖3.10是我們采用的MSC.G12864DYSY-1W型液晶模塊的外部尺寸圖?! D3.11MSC.G12864DYSY-1W型液晶模塊的結構圖,由圖中可以看出電磁流量計液晶模塊集成了兩個KS0108B顯示驅動控制器和一個KS0107B顯示驅動器,兩個KS0108B分別控制左右兩個半屏(64x64)像素點的顯示,KS0107B作為64行的行驅動控制。
您如果需要德國VSERS400流量計辦事處的產品,請點擊右側的聯系方式聯系我們,期待您的來電