德國VSEAHM02流量計中國同時我們還經營:超聲波流量計根據聲道布置形式可以分為單聲道超聲波流量計和多聲道超聲波流量計。單聲道超聲波流量計在測量管道上只安裝一對超聲波換能器,多聲道超聲波流量計則在測量管道上安裝多對超聲波換能器,包含多個獨立的超聲波傳播路徑。多聲道超聲波流量計對于流場的適應能力更強,可以提高流量計的測量精度;然而單聲道超聲波流量計在小管徑場合應用更為廣泛,而且通過反射鏡的應用單聲道超聲波流量計的聲道布置形式越來越復雜,測量精度也隨之提高。根據聲道的傳播方式,常用的單聲道超聲波流量計主要有Z型流量計,U型流量計,V型流量計,N型流量計和三角型流量計,不同傳播類型的單聲道超聲波流量計聲道示意圖如圖4-1所示,其中紅色虛線表示聲波傳播路徑?! 《嗦暤莱暡髁坑嫴捎脭抵捣e分的方法提高流量修正系數的精度,可以解決單聲道超聲波流量計測量不確定度誤差大的問題。多聲道超聲波流量計通常采用Gauss積分方法計算式(2-7)中各聲道位置ri/R和相應的權重系數wi。在相同采樣點數、節數自由的情況下,Gauss 型數值積分方法相對于辛普森公式和梯形公式等插值型積分方法計算精度更高。對于圓形測量管道的超聲波流量計中聲道位置和相應權重系數的計算一般采用Gauss-Jacobi積分方法。按照 Gauss-Jacobi 積分方法的零點確定各聲道高度,按積分方法中的權重系數計算聲道權重系數?! 嶋H中各聲道上速度分布與理想的代數多項式表示的流速分布差異很大,特別是無法體現管壁處流速為零的特性,導致流量的積分結果偏高,影響流量計的測量精度。為了使計算結果更加接近于圓形管道內液體充分發展的真實值,提出了采用最佳圓截面算法(OWICS)計算聲道位置ri/R和權重系數wi的方法,最佳圓截面算法其實是基于正交多項式的 Gauss 積分方法。Gauss-Jacobi和OWICS積分方法計算各聲道位置和權重系數如表4-1所示.為保證超聲波流量計流量測量精度,選擇測量點時要求選擇流體流場均勻的部分,一般應遵循下列原則:1、被測管道內流體必須是滿管。2、選擇被測管道的材質應均勻質密,易于超聲波傳播,如垂直管段(流體由下向上)或水平管段(整個管路中最低處為好)。3、安裝距離應選擇上游大于10倍直管徑,下游大于5倍直管徑(注:不同儀器要求的距離會有所不同,具體距離以使用的儀器說明書為準)以內無任何閥門、彎頭、變徑等均勻的直管段,測量點應充分遠離閥門、泵、高壓電、變頻器等干擾源。4、充分考慮管內結垢狀況,盡量選擇無結垢的管段進行測量。外夾式流量計傳感器安裝要點 時差式超聲波傳感器安裝方式有三種,分別是V法、Z法和W法,如圖3所示?! y量時采用何種安裝方式,儀器說明書均有規定,但在邊界范圍一般比較模糊。如TFX1020P時差式超聲波流量計:V型安裝法適用測量管徑25~400 ㎜,Z型安裝法適用測量管徑100~2540㎜,W型安裝法適用測量管徑65㎜以下小管。V型與Z型、V型與W型在適用測量管徑均有部分重疊,如遇此情況 則按下列原則選擇最佳安裝方式:V型安裝一般情況下是標準安裝方式,使用方便,測量準確。當被測管道很粗或由于被測流體濁度高、管道內壁有襯里或結垢太 厚,造成V型安裝信號弱,儀表不能正常工作時,選用Z型安裝。原因是使用Z型安裝時,超聲波在管道中直接傳輸,沒有折射,信號衰耗小。W型安裝適于小管, 通過延長超聲波傳輸距離的辦法來提高小管測量精度,如圖3(c),使用W型安裝時,超聲波束在管內折射三次,穿過流體四次。 流量傳感器安裝方式有兩種,分別是對稱安裝和同側安裝。對稱安裝適用于中小管徑(通常小于600㎜)管道和含懸浮顆?;驓馀葺^少的液體;同側安裝適用于各種管徑的管道和含懸浮顆?;驓馀葺^多的液體。外夾式超聲波流量計傳感器安裝要求1、剝凈測量點處附近保溫層和保護層,使用角磨砂輪機、銼、砂紙等工具將管道打磨至光亮平滑無蝕坑。要求:漆銹層磨凈,凸出物修平,避免局部凹 陷,光澤均勻,手感光滑圓潤。需要特別注意,打磨點要求與原管道有同樣的弧度,切忌將安裝點打磨成平面,用酒精或汽油等將此范圍擦凈,以利于傳感器粘接。2、在水平管段上,兩個傳感器必須安裝在管道軸面的水平方向上,并且在軸線水平位置±45°的范圍內安裝,以防止管內上部流體不滿、有氣泡或下部有沉淀等現象影響正常測量,如圖5所示。3、傳感器安裝處和管壁反射處必須避開接口和焊縫,如圖6所示。4、傳感器工作面與管壁之間保持有足夠的耦合劑,不能有空氣和固體顆粒,以保證耦合良好。渦輪流量計作為速度式儀表,以動量矩守恒為基礎,渦輪流量計基本力矩平衡方程為[1]: 式中 Tb一軸與軸承的粘性摩擦阻力矩(流動產生的力矩); Td一渦輪流量計轉動的驅動力矩; Th一輪轂表面的粘性阻力矩; Tm一磁電阻力矩和軸與軸承的機械摩擦阻力矩之和; T1一葉片頂端與傳感器外殼的粘性摩擦阻力矩; Tw一輪轂端面粘性摩擦阻力矩; J一渦輪的轉動慣量; ɷ-渦輪轉動的角速度。 當流速較低時,渦輪流量計處于靜止狀態,此時角速度ɷ非常低,接近于0,Tb和Tw也可以忽略不計。在這種情況下,式(1)可以簡化為: 由式(2)可以看出提高驅動力矩是降低渦輪流量計啟動排量的一-條捷徑。如圖1所示,傳統渦輪流量計入口端是直管段和軸向導流片,流體流經渦輪葉片之前只有軸向速度,對渦輪的驅動力矩只是對渦輪葉片作用力的徑向分力產生的力矩。因為渦輪葉片螺旋角為45°,如果將導流片改為螺旋角為-45°的螺旋導流片(圖2),當流體進入導流片時會產生旋轉,方向與渦輪葉片正交,使得流體在軸向流動速度不變的基礎上增加了徑向的旋轉運動,流體的旋轉方向與渦輪葉片的轉動方向一致,在相同流量條件下,增加了流體對渦輪葉片的驅動力,實現降低啟動排量和提高分辨率的目的,整體結構如圖3所示。1、旋進旋渦流量計無機械可動部件,耐腐蝕,穩定可靠,壽命長,長期運行無須特殊維護;2、采用16位電腦芯片,集成度高,體積小,性能好,整機功能強;3、智能型流量計集流量探頭、微處理器、壓力、溫度傳感器于一體,采取內置式組合,使結構更加緊湊,可直接測量流體的流量、壓力和溫度,并自動實時跟蹤補償和壓縮因子修正;4、采用雙檢測技術可效地提高檢測信號強度,并抑制由管線振動引起的干擾;5、采用漢字點陣顯示屏,顯示位數多,讀數直觀方便,可直接顯示工作狀態下的體積流量、標準狀態下的體積流量、總量,以及介質壓力、溫度等參數;6、采用EEPROM技術,參數設置方便,可*保存,并可保存長達一年的歷史數據;7、轉換器可輸出頻率脈沖、4-20mA模擬信號,并具有RS485接口和HART協議,可直接與微機聯網,傳輸距離可達1.2Km;8、配合本公司的FM型數據采集器,可通過因特網或者網絡進行遠程數據傳輸;9、壓力、溫度信號為變送器輸入方式,互換性強;10、旋進旋渦流量計整機功耗低,可用內電池供電,也可外接電源。1、孔板流量計包括3部分:①現場取壓部分,包括高級孔板閥、前后直管段、導壓管;②溫度、壓力、組分補償部分,包括現場用溫度變送器、壓力變送器、天然氣組分分析儀計量的實時數據;③流量計算部分,指專用流量計算機(或計算儀)所安裝的計量標準程序。 2、在實際應用過程中,當充滿管道的流體流經管道內的節流件時,如圖1所示。 流線將在節流件處形成局部收縮,因而流速增加,靜壓力降低,于是在節流件前后便產生了壓差。流體流量愈大,產生的壓差愈大,這樣可依據壓差來:衡量流量的大小。這種計量方法是以流動連續性方程(質量守恒定律)和伯努利方程(能量守恒定律)為基礎的。壓差的大小不僅與流量還與其他許多因素有關,例如當節流裝置形式或管道內流體的物理性質(密度、粘度)不同時,在同樣大小的流量下產生的壓差也是不同的。以伯努利方程式和流體流動的連續性方程式為依據,天然氣流量計算公式是: 根據氣體易壓縮、密度差異大、受溫度影響大的特點,得出天然氣流量計量的實用公式是:式中:Qn一標準狀態下氣體體積流量; Ah一常數,標況下為0.008686; ɑ0一特定流量系數; Yre一計量管內壁流量修正系數; bk一孔板流量計入口邊緣銳利度修正系數; Fr一雷諾數修正系數;. ε一氣體膨脹系數; d-孔板在20°C下實測的開孔口徑; Fa一孔板熱膨脹修正系數; Fg一天然氣相對密度修正系數; Fz一超壓縮系數; Ft一流體流動溫度修正系數; P1一孔板上游側絕對壓力; hw一氣體流過孔板時的差壓。 考慮到容積式流量測量裝置結構較復雜,安裝維護和校準不方便,有必要在滿足精度和抗震.性能要求的前提下,采用安裝和維護方便的其他形式流量測量儀表。熱式氣體質量流量計已在氣體流量測量領域獲得了成功的應用,具有無可動部件、壓損小及量程比寬等特點,例如在核電廠的通風系統中,已成功地替代皮托管成為重要的測量方式。但在液位流量測量領域,熱式質量流量計的應用仍具有局限性。 由式(2)可知,熱絲的熱散失率與流體的熱導率、比熱容、流速和密度有關。相對于通風系統中的空氣來說,水是-種具有較大比熱容、較大密度和熱導率的介質。在相同的流速下,水帶走的熱量遠大于空氣,對于以恒定功率加熱熱端鉑電阻的恒功率型熱式質量流量計,為了適應水流量的測量,加熱電路會采用比較高的加熱功率為熱端鉑電阻進行加熱;對于恒溫差型的熱式質量流量計,為了維持兩個鉑電阻之間恒定的溫差,加熱電路同樣會處于比較高的加熱功率狀態下,且加熱功率將隨水流量的增大而增大。因而,無論是恒功率型還是恒溫差型,加熱功率的提高會對流量計的安全性和壽命有很大的影響,也使其應用環境造成一定的局限性。而恒比率式流量計由于通過調節施加在熱端熱電阻上的加熱電流,使熱端熱電阻的阻值與冷端熱電阻的阻值成一恒定比率,因而同恒溫差式流量計相比,在測量相同流速流體的情況下,恒比率式流量計熱端鉑電阻的加熱電流要小于恒溫差式,因而其加熱功率不會過高而產生儀表安全性和使用壽命方面的不利影響。對于主泵第三級密封泄漏流這種微小流量的測量,相對于恒功率式和恒溫差式,恒比率式熱式質量流量計具有更好的應用價值,然而對于較大液體流量的測量則并不適用。恒比率式流量計的熱端鉑電阻加熱電流Ih與介質質量流量m的關系為: 式中Ap-一流體流經管道的截面積; As一傳感器參與熱交換部分的表面積; C1、C2一通過校準確定的常數; d一熱電阻傳感器直徑; k一流體熱導率; Ls一傳感器損耗能量的因數; n一校準過程中通過回歸確定的指數; Pr一流體的普朗特數; Rc一冷端鉑電阻阻值; Rco一冷端鉑電阻在0℃時的阻值; RH一熱端鉑電阻阻值; RH0一熱端鉑電阻在0C時的阻值;, r一恒比率參數(自加熱系數),r= a一鉑電阻的參數。 1.基本性能 熱式質量流量計作為一種直接測量質量流量的智能型流量儀表,具有結構簡單、體積小、數字化程度高及安裝方便等優點。熱式質量流量計的.測量精度一般約為±1%,重復性為±0.2%;量程比寬可達100:1,最高可達1000:1;在-40~60℃的環境溫度下可正常工作;可耐受3MPa或更高的管道壓力;允許介質工作溫度-70~400℃;允許被測液體的流速為0~4m/s;支持HART協議。另外,具有壓損小、直管段要求低和允許動態修正的特點,其響應時間較長,未采用特殊設計時可達幾秒。熱式質量流量計具有一體式和分體式兩種.結構,在累積輻照劑量較大區域,可采用分體式流量計進行測量,信號處理部分布置于累積輻照劑量較小區域。 主泵第三級密封泄漏流正常工況下在5L/h左右,達到50L/h時報警,不用于過程控制。在電廠正常運行工況下,測點所在區域的環境溫度約為50℃以下,工作壓力小于0.6MPa,工作溫度小于100℃,要求測量范圍的量程比約為30:1,屬于非1E級測點。因此,就測量要求而言,熱式質量流量計適用于主泵第三級密封泄漏流量的測量。 2.抗震性能 由于主泵第三級密封泄漏流測點位于安全殼內,周圍存在1E級儀表和核級管道,盡管測點本身不需要在設計基準事件工況下執行功能,但不應對其他需要執行功能的設備或儀表造成損害,因而用于該測點的儀表應滿足抗震要求,在SSE地震載荷下,滿足結構完整性的要求,避免放射性物質經儀表破口向環境釋放以及對周圍1E級儀表和核級設備產生潛在危害。 熱式質量流量計結構簡單,除進行抗震試驗外,抗震分析亦可用于分析其抗震性能。在抗震分析中,需要重點對薄弱部位進行應力分析,通常包括傳感器與管道相交的節點處、螺紋連接處及法蘭連接處等位置。 對某一型號熱式氣體質量流量計進行抗震分析,取三向峰值加速度為6g。通過應力分析表明,流量計的第一-階自振頻率大于33Hz,在地震載荷作用下,薄弱部位的計算應力值均小于規定的應力限值,從而認為其在SSE地震載荷下,結構完整性可以得到保證。 3.耐輻照性能 因主泵第三級密封泄漏流測點位于安全殼內,在電廠正常運行工況下,探頭所處的環境具有一定的電離輻射存在。因而,用于該測點的儀表應能經受--定的累積輻照劑量而測量結果仍在要求的測量精度范圍內。目前,對于儀表的耐輻照性能,主要采用試驗法進行驗證。 對某一型號分體式熱式質量流量計探頭進行耐輻照試驗,輻射源采用鈷-60,試驗時間持續40h以上,累積輻照劑量約2x104Gy,輻照后進行功能試驗,流量計的輸出維持在測量精度范圍內,表明該型流量計可以經受若干年的累積輻照劑量而不損壞。 4.安裝 為便于安裝和維護,流量計可采用法蘭-法蘭連接的形式。在一般情況下,為了滿足測量精度,熱式質量流量計對于前后直管段的要求較高,部分型號的流量計要求的直管段長度可達到前15D、后5D以上。但由于流量計允許動態修正,經過標定和修正后,可降低熱式質量流量計的前后直管段要求。對于主泵第三級密封泄漏流的測量,熱式質量流量計可滿足安裝和維護要求。 由于孔板流量計有多個測量單元,影響其測量準確度的因素很多(如孔板的加工誤差,安裝誤差、計量軟件的計算誤差等)。此外,在現有工況條件下,由于介質中的雜質對孔板有一定的沖擊腐蝕作用,易造成差壓變送器產生零點漂移,特別是當天然氣處理效果不理想時,對計量的影響更大。因此,節流裝置和差壓變送器的使用維護是一個重點。應在下面的實際運行中加以注意:(1)當天然氣處理效果不理想時,在孔板上游端面會沉積臟物。不僅會降低孔板的使用壽命,還會造成較大的計量偏差。(2)變送器導壓管的作用是將孔板前后的壓力信號引入差壓,測量出差壓值參.與流量計算,上下游導壓管帶液會使差壓偏小(大),造成流量偏小(大)。在冬季,導壓管凍堵現象較常見,如果流量值出現大的起伏,很可能是導壓管帶液或凍堵了。(3)孔板膠圈變形。由于孔板膠圈在清油的浸泡下容易變形(這種情況在夏季尤為突出),因此在.天然氣處理裝置停運的情況下,要注意檢查膠圈變形的情況,-旦孔,板松動應立即更換,不然不僅會因膠圈泄漏造成較大的計量誤差,還會出現孔板脫落難以取出.必須停產維修的局面。(4)當天然氣處理不干凈時,其中的粉塵、水化物等對孔板有很強的沖刷腐蝕作用,會在孔板表面形成麻點,使直角邊變鈍,因此,孔板應經常檢查更換,否則準確度會降低。(5)差壓變送器零點漂移除了與儀表本身的穩定性有關外,,導壓.管帶液也會造成很大的影響。由于孔板流量計的流量和差壓值成開方關系,差壓變送器的零點出現正負漂移會直接造成積算流量偏大或偏小。(6)流量計算機中一些關鍵參數輸入不正確或更新不及時。比.如,孔板開孔直徑是以平方的形式出現的,由于孔板開孔直徑會隨季節和運行時間發生變化,一-定要定期測量孔板的開孔直徑,并在流量計算機中及時更新。 天然氣組分變化不僅影響相對密度,還影響超壓縮系數。對于沒有在線色譜儀的計量系統,,在組分變化不大的情況下流量計算機中一般每周輸入-周天然氣組分的平均值,但在天然氣組分變化很大的情況下,每天都要對天然氣組分進行化驗.更新。2提高天然氣計量準確度的應對措施(1)定期清洗檢查孔板。比如孔板流量計光潔度直角邊銳利度、膠圈變形情況、孔板開孔直徑等。在正常的生產情況下。每月清洗檢查-次,在出現不正常的情況下,視情況加密檢查次數。(2)對流量計前過濾器每兩小時排污一次,每月清洗過濾器芯--次。(3)正確輸入計量參數并及時更新.按時校驗變送器零點。另外,在氣量波動較大的情況下,及時調節差壓變送器量程,使測量值盡量在量程的1/3-2/3之間,以保證測量準確度。在測量值超出變送器最大、最小量程范圍時,要考慮更換合適孔徑的孔板。電磁流量計是一種測量導電介質體積流量的感應儀表,在進行現場監測顯示的同時,可輸出標準的電流信號,供記錄、調節、控制使用,實現檢測自動控制,并可實現信號的遠距離傳送?! ≈悄茈姶帕髁坑嬀哂芯雀?、靈敏度高、穩定性好等優點,在供水企業中有著廣泛的應用前景,特別是在大口徑、安裝環境好的工廠、居民區等場所,雖然智能電磁流量計的使用已經非常成熟。但是,仍有一些問題需要注意。一、信號傳輸問題: 電磁流量計在區域管網中運行時,可以為城市供水調度提供一定的決策信息。因此,用戶對電磁流量信號的實時性和連續性提出了更高的要求。如果智能電磁流量計能完成儀器本身信號的自動轉換和無線傳輸,減少數據采集的兼容或相互轉換等困擾,那將為企業的使用提供便利,也將為儀表的推廣應用增加更大的優勢。二、電源問題: 目前智能電磁流量計不自帶電源,造成了室外安裝不方便,一旦斷電,將造成用作結算水表的流量計數據缺失,這樣對其斷電時段缺失水量的計量與推算也就提出了新的問題。若電磁流量計能自帶電源,就能從根本上解決這一問題,也將促進其在結算水表中的推廣應用。三、防雷問題: 電磁流量計在雷雨天氣覆蓋較廣的地區防雷是個重要的工作。在嚴格做好接地、電源保護后,在空曠地區安裝的電磁流量計被雷擊的概率還是很高。所以簡單有效的辦法是提高流量計自身的防雷性能,如不能根本性解決,則應對其內部電路進行分離保護,這樣即使雷擊損壞,也能降低更換成本。德國VSEAHM02流量計中國在實際應用時,對于孔板流量計如果使用不當,會造成很大的測量誤差,有時可達到20%左右。在流量計的使用中,如何減少其測量誤差,必須考慮流量的測量原理和結構形式,注意使用條件和測量對象的物理性質是否與所選用的流量計性能相適應。下面就其測量誤差進行分析:1.流量計算方程描述流體是充滿圓管的、充分發展的定常流。若流動狀態真實性無法確定,如果仍按照原有的儀表常數推算流量,將與實際流量存在誤差。2.天然氣以甲烷為主加上乙烷和其他少量的輕烴,真實相對密度小于或等于0.75。由于被測介質實際特性的不確定因素,以及實際物性變化影響儀表正常工作等對流量測量的不確定度產生影響。3.孔板的結構設計、加工、裝配、安裝、檢驗和使用必須符合標準規定的全部技術要求。由于各個裝置自身及環境條件因素引起的不確定因素。3.1.孔板安裝不正確 管道水平安裝,如果孔板開孔中心與管道中心線不同心;如果在安裝過程中存在引壓管堵塞及墊片等凸出物,則會造成孔板前后壓差測量不準確,從而造成測量誤差。3.2.孔板入口邊緣被磨損 在使用中,由于流體的磨蝕作用,使孔板的入口邊緣變鈍,被磨成圓形入口邊緣。結果是在相同的流量下,孔口收縮系數變大,造成差壓發生變化,造成測量誤差。3.3.孔板表面的結垢 長期使用時,孔板流量計表面結垢,使孔板的流通面積變小,從而造成差壓增大,使流量計測量值大于實際值,影響計量精度。4.差壓變送器零點漂移和量程設置不當 由于時間較長,變送器的零點會發生漂移,這時差壓變送器的輸人和輸出信號發生變化。若不及時調整,會造成實測流量值偏低或偏高。德國VSEAHM02流量計中國1.流量測量 現階段,渦輪流量計對脈動流的直接測量還存在很大困難,但可通過誤差方程分析、實驗室試驗和專業的脈動流量誤差檢測設備檢測分析某一特定脈動流的測量誤差。前兩種方法基于脈動流的振幅和頻率的可測量性,振幅和頻率的測量可通過激光多普勒技術、熱線風速儀法等。專業的脈動流量誤差檢測設備已有設備制造廠家在生產。1.1誤差方程分析 通過對機翼理論的研究,可列出涉及慣量、夾角、葉輪半徑、角速度等參數的誤差運動方程,通過編程可求得針對某一特定渦輪流量計的不同振幅和頻率脈動流的測量誤差。依據動量守恒定律,可列出包含流速、切線速度等參數的非線性微分方程,通過計算和分析可理論推導測量誤差。1.2實驗室試驗 現場實測脈動流的特性,采用已知標準體積壓縮空氣,在實驗室模擬脈動流,將測量值與標準體積進行對比,分析測量誤差。1.3誤差檢測設備檢測 上海某公司生產的一種燃氣脈動流誤差檢測設備,可較精確地測得脈動誤差值,但暫未在山西省廣泛應用。在絕大多數燃氣公司的實際運行管理過程中,脈動流的特性參數無法在日常運行監測數據中獲取,因此,主要定性地說明脈動流對渦輪流量計計量偏差的影響。2.測量誤差 已有很多學者針對脈動流對計量的影響進行了研究。分析結果可知,由于葉輪受流體加速影響小,受流體減速影響大,計量始終存在正供銷差。此外,正供銷差取決于脈動流的振幅和頻率,整體來說,如果脈動流頻率大于葉輪角頻率時正供銷差值較大,脈動振幅增大時正供銷差值也隨之增大。3.脈動流對計量結果影響 A分輸站渦輪流量計距離上游最近的壓縮站(往復式壓縮機增壓)不到7km,且該分輸站工藝布置緊湊。據實地測量,流量計上游直管段長度約為6Dn(Dn為渦輪流量計口徑,mm),下游直管段長度約為4Dn。此外,7km管道沿線地勢高低不平,加之煤層氣氣質水含量較大,導致在低洼處極易形成積液,積液也會造成脈動流?! ?020年8—10月期間,下游公司發現正供銷差持續增大時,對A分輸站和B分輸站的渦輪流量計進行了標定,但標定結果均為合格。隨后下游公司在2020年11月5—7日對A至B分輸站段管線進行了清管作業,共清出污水雜質約23t,清管完成后正供銷差明顯減小。清管前后實際供銷差數據如表6所示?! 〕酥?,通過日常對氣體渦輪流量計的運行監測,供氣瞬時流量每次顯示數據都在變化,且在一定時間內在1個值上下頻繁波動(波動幅度約為依20%)。綜合上述情況,該輸氣管道存在脈動流的可能性很大。脈動流會造成正供銷差影響,對下游接氣單位不利,因此有必要對脈動流的影響進行修正。
您如果需要德國VSEAHM02流量計中國的產品,請點擊右側的聯系方式聯系我們,期待您的來電