德國VSEAHM03流量計供應同時我們還經營:1.傳感器設計 設計先進的傳感器。渦街流量計傳感器電容極板的基體在高度下成型??垢邏禾匦?,使核心元件的內部結構提升?,F代流場分析技術。對傳感器的具體結構以及安裝位置進一步改進,增強抗振性能,可以消除各個方向的干擾,攪動,使渦街在流動情況下的抗干擾能力,時域毛刺快樂,頻城戶外活動穩定。頻帶能自動跟蹤,無須電位器或撥動開關調整頻帶和靈敏度,無零漂移,量程自由設定,真正實現現場免調試。2.先進性現場總線設計 采用全數字化現場總線的智能渦街流量計。目前,研究現場總線技術是智能儀表的焦點??梢钥紤]實際需求,增加HART總線接口,該模塊采用抗干擾能力強,通信速率高,數據精確高的電路來完成傳輸數據,它真正RS .485總線通信的抗干擾能力強的特點,又具有輸出信號為二線制4~20mA的工業標準,根據各自的通訊,完成HART協議數據協議層和應用層的設計,實現HART總線通信功能.3.先進的數字信號處理方法的設計 應用更先進的數字信號處理方法,能更好地解決干擾問題,提高測量精度,進一步提高的敏感信號與渦街信號在頻譜的現場研究,當兩種信號頻率在研究同一頻段且頻率非常接近時,無法檢測到這兩種信號和消除噪聲信號的作用,對渦街信號分析的干擾等。塑料則,吸收它分頻特性好,會造成光纖精度高。同時,靠近渦街頻率的微細濾網,將影響測量精度,還需要研究函數的選擇、因此,瀑布幅頻特性和中心頻率的如何調整頻率和采樣點數確定,以及在軟件編程中如何優化算法,使量少、內存占用量少和性能小,以保證體積小。實時性好和計算精度高等問題。研究強干擾噪聲不為基礎創建噪聲的模板,考慮建立--種通用的模板,真正解決干擾下渦街信號和噪聲的判別、分離及提取問題,在傳感器條件一定的情況下,考慮利用信號處理技術擴大流量程比,提高小測量精度,全面深入研究流場噪聲以及他們對渦街流量計信號影響等。電磁流量計等節點設備和站內PC機間的通信采用異步串行通訊控制規程,并采用地址位喚醒握手協議.因此在協議中規定了傳地址和傳數據兩種不同的幀格式,如圖4.4所示.地址幀和數據幀都有11位,其中第l位和最后l位相同,分別為起始位和停止位,緊接起始位的是8位數據位,第9位為標志位,用來區分所發送/接受的幀信息是地址幀還是數據幀.第9位為1時,表示PC機發送/接受的是“地址幀":第9位為0時,表示主機發送/接受的是"數據幀".命令幀與校驗和的發送格式與數據幀相同,因此可由數據幀演化得到.對于"徑向"型單聲道超聲波流量計,流量修正系數K定義為沿超聲流量計信號傳播聲道上的線平均流速Lv與管道截面平均流速Sv的比值。由式(2-13)和式(2-14)可以得到層流狀態下的流量修正系數K為由式(2-17)和式(2-18)可以得到湍流狀態下的流量修正系數K為根據表1可以得到不同雷諾數下湍流流態的流量修正系數 K,而在實際工程應用中,當管道內流體雷諾數Re<105時,湍流狀態流量修正系數K為當管道內流體雷諾數Re>105時,湍流狀態流量修正系數K為 上述對于流量修正系數的分析是基于流量計處于理想的安裝條件下,即安裝處管道內流體充分發展。實際流量修正系數不僅與雷諾數有關,還與管道的安裝狀況、流量計上下游管段長度等因素有關。通常情況下管道內實際流態分布與理想流態分布有偏差,對超聲波流量計的測量精度產生影響,因此在管道布置和流量計安裝時,一般要求上游直管段大于10倍管道內徑,下游直管段要大于5倍管道內徑。為了適應儀表網絡化的發展方向,在系統設計時我們要根據實際需要為電磁流量計配備合適的通信接口.在當今單片機系統的通信中,RS232和RS485標準總線應用最為廣泛,技術也最為成熟.RS232用來連接兩臺計算機(微處理器)之間的串口通信,當我們需要一個更長的距離或者比RS232更快的速度下進行傳輸的時候,RS485就是一個很好的解決辦法.另外,RS485連接不限于僅僅連接兩臺設備.根據距離,比特率和接口芯片,我們可以用單一導線連接最多256個節點.為了使電磁流量計的應用范圍更加廣泛,我們選用RS485標準總線來實現儀表和外部系統的通信. RS485是雙向、半雙工通信協議,允許多個驅動器和接收器掛接在總線上,其中每個驅動器都能夠脫離總線.該規范滿足所有RS422的要求,而且比RS422穩定性更強.具有更高的接收器輸入阻抗和更寬的共模范圍(-7V至+12V). 接收器輸入靈敏度為士200mV,這就意味著若要識別符號或間隔狀態,接收端電壓必須高于+200mV或低于-200mV.最小接收器輸入阻抗為12k,驅動器輸出電壓為±1.5V(最小值)、+5V(最大值). 驅動器能夠驅動32個單位負載,即允許總線上并聯32個12k的接收器.對于輸入阻抗更高的接收器,一條總線上允許連接的單位負載數也較高.RS485接收器可隨意組合,連接至同一總線,但要保證這些電路的實際并聯阻抗不高于32個單位負載(375). 采用典型的24AWG雙絞線時,驅動器負載阻抗的最大值為54,即32個單位負載并聯2個120終端匹配電阻.RS485已經成為POS、工業以及電信應用中的最佳選擇.較寬的共模范圍可實現長電纜、嘈雜環境(如工廠車間)下的數據傳輸.更高的接收器輸入阻抗還允許總線上掛接更多器件. 因RS485接口具有良好的抗噪聲干擾性,長的傳輸距離和多站能力等上述優點就使其成為首選的串行接口.因為RS485接口組成的半雙工網絡一般只需二根連線,所以RS485接口均采用屏蔽雙絞線傳輸.RS485接口連接器采用DB-9的9芯插頭座,與智能終端RS485接口采用DB.9(孔),與鍵盤連接的鍵盤接口RS485采用DB.9(針). 通信接口電路如圖3.13所示,我們選用MAX485作為系統的通信接口芯片.MAX485是MAXIM公司推出的支持RS485協議的低功耗收發器,它的驅動器擺率不受限制,可以實現最高2.5Mbps的傳輸速率.它是用于RS.485通信的半雙工低功率收發器件,包含一個驅動器和一個接收器,具有輸入接收器和輸出驅動器使能管腳.使用一個半雙工連接的難點就是控制每個驅動器在什么時候被啟用,或者處于激活狀態.當一個驅動器在傳輸的時候,必須直到它完成傳輸都保持被啟用狀態,然后在一個應答節點開始響應之前切換到禁用狀態.MAX485的控制端RE和DE短接,這樣用一個信號可以控制兩種狀態:接收和發送.RE和DE為“l”時,發送端接通,數據經DI腳后,變成傳送的信號送到傳輸線.RE和DE為“0”時傳輸線上的信號經MAX485,當處于發送狀態時,數據信號經發送端DI,在輸出端A和B上交替出現高電平:當處于接收狀態時,A和B上交替的高電平信號經MAX485轉換成高低電平信號經RO輸出.在電磁流量計傳輸過程中,交替的高電平保證通信傳輸回路中始終有電流,能實現可靠通信.1.施工工藝的影響與處理按照循環灌漿的原理,返回漿液要流回攪拌桶,采用2臺電磁流量計分別計量進返漿管道中漿液的流量。然而.有些用戶去掉返漿管上的電磁流量計,返漿管通過一個三通直接接在電磁流量計下游的進漿管上,返回漿液不返回攪拌桶,采用一臺電磁流量計測量灌漿量,其結果在巖層吸漿量很小和灌漿結束階段,漿液流過電磁流量計F的流速很小,遠低于電磁流量計的流速下限,信噪比S/N很小,測量誤差高達50%,無法精確計量。2.測量管道內附漿量的影響與處理 每次灌漿結束后,要及時清除電磁流量計測量管內的殘余漿液,否則水泥漿液易在測量管道內產生不同程度的膠結,甚至堵塞電磁流量計測量管和相接的灌漿管道。電磁流量計測量管內的附著層會引起附加相對誤差△Ɛ,實踐證明其引起的誤差是很大的,假定其厚度相同△ε由式(5)計算: 水泥顆粒的σɷ和水泥漿液σf相差很大,因為附著水泥層電導率極低,當附著物有一-定厚度時△Ɛ會比較大。3.介質中氣泡的影響與處理 因工藝或介質本身的原因,所測液體常含--些氣泡。電磁流量計屬于流速型的流量方式,氣泡在管道圓截面中所占據的面積百分率,幾乎就等同于氣泡對流量測量的影響量。此外由于氣泡經過電極表面存在一個摩擦過程,由此會產生尖峰脈沖干擾電勢,其值遠大于正常的流量信號。通常電磁流量轉換器無法有效地處理如此的干擾,輕者導致測量值不穩定,嚴重時儀表根本無法工作,一些缺乏經驗的用戶僅從工藝的要求出發,對電磁流量計的安裝位置沒有考慮防止氣泡的產生,例如有些用戶把電磁流量計安裝在灌漿泵的吸入端,吸入端的漿液中常會混入成泡狀流的小氣泡,故電磁流量計一般要安裝在泵的排出端。電磁流量計最好垂直安裝,漿液自下而上流動。水平安裝時要使電極軸線平行于地平線,不要垂直于地平線,因為處于底部的電極易被沉積物覆蓋,頂部電極易被液體中偶存氣泡擦過遮住電極表面。4.惡劣施工現場環境的影響與處理 灌漿施工現場的環境大部分時間比較惡劣,例如高溫、潮濕高灰塵等,如果電磁流量計外殼的密封不良,諸如接線盒,以及一些非焊接氣密封結構的外殼,時間長了冷凝水和灰塵容易積聚在電磁流量計的接線盒中,或透過密封不良的結合面滲入電磁流量計殼體中,由于電磁流量計的流量信號極其微弱(通常是幾mA),冷凝水和灰塵的存在,直接的后果是導致電磁流量計轉換器輸入回路阻抗下降,衰減了欲輸往放大器的流量信號;或者是破壞勵磁回路和信號回路的絕緣,將高達幾十V的勵磁電壓引入到低電勢的信號回路中,造成電磁流量計的嚴重故障。為了避免此類故障的發生,可在接線盒中灌注絕緣材料,在維修和調試電磁流量計的時候一-定要避免進水,保持接線盒內的干燥與干凈,使用中一定要避免浸泡在水或漿液中。流量計準確度影響的實驗分析 1實驗要求 實驗用鐘罩式氣體流量計標定裝置標定DN50G65氣體渦輪流量計,其準確度等級為1.5級;最小流量為Qmls:10m'/h,最大流量為Qmax:100m³/h;流量計量程比為1;10;上游直管段要求:5D=50X5=250mm=25cm,'下游直管段要求:3D=50X3=150mm=15cm. 2實驗思路 實驗以在流量計前端安裝一對大小頭作為擾流件,在擾流件和流量計之間安裝不同長度的直管段。經過一定時間段的運行,確認標準裝置與流量計的流量偏差以及疣量計的重復性,以此分析擾流件對流量計準確度的影響。 3實臉分析 3.1在流量計.上游安裝40cm直管段,下游安裝19cm直管段實驗 流量計上游直管段長度大于5D(25cm),下游直管段長度大于3D(15cm),實驗安裝圖如圖1所示,示意圖如圖2所示。 實驗數據如表3所示。 從表3可以看出,擾流件安裝在距流量計上游端較遠時,其運行數據的流量偏差與重復性符合流量計的國家標準。 3.2在流量計上游安裝29.1cm直管段,下游安裝19cm直管段實驗 流量計上游直管段長度較大于5D(25cm),下游直管段長度大于3D(15cm),實驗安裝示意圖如圖3所示. 實驗數據如表4所示。從表4可以看出,擾流件安裝在距流t計上游端接近5D處時,其運行數據的流量偏差(qmin≤q≤qt部分)>3%,不滿足國家標準的要求,但其重復性符合流量計的國家標準。 3.3在流量計上游安裝19cm直管段,下游安裝40cm直管段實驗 流量計上游直管段長度小于5D(25cm),下游直管段長度大于3D(15cm),實驗安裝示意圖如圖4所示 從表5可以看出,找流件安裝在流量計上游端小于5D處時,其運行數據的流量偏差(qai≤q≤qt部分)>3%,不滿足國家標準的要求,但其重復性符合流量計的國家標準。1.始動比較低,量程比較寬 為滿足社會發展,超聲波流量計的計量范圍也越來越大,流速在0.05m/s~30m/s的范圍內的流體都可以被精準測量,量程比達到1:700左右,可測范圍也比較廣,可滿足氣體、液體傳輸過程中對安全的需求,并且靈敏度也比較高,可測量很小的流量,保證計量不間斷,可良好地滿足峰谷用量差異大的場合。2.自帶旋轉整流器 超聲波流量計中自帶旋轉整流器,因此,對超聲流量計安裝位置前后管道的要求比較低,解決了傳統流量計不確定流場打亂的問題,可形成自己所需的流場,旋轉整流器的使用,可促使前直管段從原先的20D縮短到5D之內,從而降低安裝管段的長度,降低對空間的要求,影響精度可控制在1%以內。3.抗污染性能強 超聲波流量計通常都應用在測量環境比較惡劣的場所,如果抗污染能力不足,必然會增加維修成本。隨著科學技術的發展,超聲流量計愈發先進可靠,無可動部件。而且具有很強的穿透性和自動清洗功能,即便長時間運行,粉塵、雜物、水汽等因素也不會影響測量的精度,維護量和維護成本都比較低。4.可實現智慧化管理 在超聲波流量計內部可設置基于NB-IoT技術遠傳模塊,利用局域網就可以實現測量數據的遠程傳輸,為中心控制端提供現場診斷資訊,進行故障預處理和異常報警,提醒現場運維人員及時處理,進行實時監控,實現“少人值班或者無人值班”的智慧化管理。測量沼氣的流量計如何選型:注意連接方式;注意結構類型;注意顯示方法;注意信號輸出方式;注意防爆形式。流量計連接方式:法蘭卡裝式(表體不帶法蘭)或法蘭連接式(表體本身帶法蘭)。一般建議選用法蘭卡裝式,因為其結構緊湊,價格低,而且供貨周期短。流量計結構類型:一體型結構和分體型結構。一般采用一體型結構,只有在特殊場合下采用分體型結構(如:介質溫度高時、環境溫度或濕度高時、帶現場顯示為讀數方便時)。流量計顯示方法:無現場顯示、帶現場顯示和只帶現場顯示?,F場顯示是指在表頭上裝有液晶顯示電路,可顯示累積流量、瞬時流量等參數。流量計信號輸出方式: 脈沖信號輸出和4~20mA標準電流信號輸出。一般情況下建議采用脈沖信號輸出,因為脈沖信號直接與旋渦脫落頻率相對應,不需轉換,具有最高的累計精度;同時,脈沖信號傳輸效果較好。標準電流信號輸出一般用于與終端或控制系統組成流量測量系統。流量計防爆形式:非防爆型和本安防爆型。如果被測介質是易燃易爆物質或測量環境存在易燃易爆物質,應選用防爆型。金屬管浮子流量計的安裝應嚴格按照說明書中的有關技術要求去做,并注意以下幾個問題: 1.金屬管浮子流量計在安裝時應留有足夠的空間,進口應有5倍管道直徑以上的直管段,出口段為250mm,安裝位置應選擇在沒有震動、便于觀察和維修的場所。 2.為保證在任何時候測量管內都充滿料液,金屬管浮子流量計應安裝在上料管的垂直段,液體流向為由下而上,不得倒流。為了便于檢查、修理和更換,安裝時采用聯接旁通,并且在金屬管浮子流量計下側留有清洗口。 3.由于在管道吹掃時有些鐵銹、焊漬清洗不凈,有時介質中含有鐵磁顆粒,應在入口處安裝磁過濾器以避免這些雜質會被吸附在浮子上使浮子卡住。 4.若金屬管浮子流量計管徑小于工藝管道管徑,應在LZ兩端安裝漸縮管,然后和工藝管道相連。 5.為了提高整個測量系統的抗干擾技術性能,信號和電源電纜要分開敷設,分別套在鋼管內,尤其要遠離動力電纜,信號電纜兩接頭的外露部分要保持非常短。 6.為保證測量精度,消除外界干擾,金屬管浮子流量計的接地線采用不小于4mm2的銅線與大地相連,埋設深度在1m左右。 氣體渦輪流量計是速度式流量計量儀表的一種,其傳統結構(圖1)主要由殼體、葉輪支架、軸承支架、葉輪軸、軸承葉輪、導流整流器、計數裝置組成。當被檢測氣體經過氣體渦輪流量計時,氣體在導流整流器中被整流和加速,然后推動葉輪進行旋轉,葉輪轉動的速度和進過流量計的流體流速成正比,通過一系列的減速,最后由計數裝置對葉輪轉動的圈數進行累加,達到流量計計量的目的。 但是通過多年的實踐發現,儀表的精度除了受零部件加工精度的影響以外,和軸承選用也有很大的關系,儀表要想保持長時間的穩定運行,軸承必須有足夠的使用壽命,但是,對于進行維修和維護的儀表進行故障統計分析,大多是由于軸承的失效造成了儀表的損壞,對其進行受力分析(圖2)表明,傳統型的流量計結構在軸承的設計方面是一個薄弱環節。 葉輪受到氣流的沖擊,氣流對葉輪除了產生驅動葉輪旋轉的推力外,還會產生一個垂直于葉輪的推力F推力,為了維持平衡,固定軸承會受到一個由軸承支架提供的反作用力F反推力。固定軸承為了支撐葉輪及軸系本身的重力會受到-個壓力N反推力,浮動軸承由于阻止葉輪以固定軸承為支點進行旋轉會得到一個壓力T",因此,固定軸承處在一個最惡劣的工作環境之下,經過長時間的運轉,在缺少潤滑的情況下,固定軸承的使用壽命大打折扣。特別是在高速運轉情況下,垂直于葉輪的推力F推力也會隨著轉速的提高而提高,固定軸承的使用狀況隨之更加惡化。事實也正是如此,在維修的氣體渦輪流量計中,離葉輪較近的固定軸承損壞幾乎占到了100%,軸承最后只剩下了內圈外圈,葉輪也因此波及,儀表不得不進行關鍵部件的更換,及時發現故障并進行排除還好,如果沒有及時發現,造成經濟上的損失我們將無法彌補。為了改善固定軸承的使用環境,軸承所承受的支撐力我們無法改變,但是,我們可以想辦法改善固定軸承所受到的反作用力F反推力,因此,引入了氣體推力軸承的設計。 渦街流量計與流體密度無關,在測流量時,考慮氣體或蒸汽溫度、壓力變化對密度的影響,需不需要進行密度、溫度壓力補償,從以下幾個方面進行探討。(1)測量介質為液體,且流量以質量流量表示。由于測液體流量時,流量指示一般為質量或重量流量,漩渦流量計由漩渦頻率-流速-體流量X密度=質量流量,當指示值以質量流量表示時,刻度系數中包含密度的因素,所以密度變化對指示值有影響,必須進行密度修正。(2)測量介質為氣體,且以標準狀態下體積表.示。 氣體流量一般習慣均以標準狀態下體積表示,刻度為Nm³/h,但工作時由漩渦頻率→流速→工作狀態體積再折算成標準狀態下體積。作為一臺漩渦流量計,一旦折算系數確定了,那么流體只有處在一個工作壓力、溫度下流量指示值才準確,這個溫度就是設計溫度,這個壓力就是設計壓力。一旦工作條件偏離了設計值也會帶來誤差,所以必須考慮溫度、壓力補償,但不考慮密度補償。(3)測量介質為氣體,且以質量流量表示。 對漩渦流量計,由漩渦頻率→疏速→工作狀態體積流量→設計狀態體積流量→標準狀態體積流量,再乘以標準狀態下氣體的密度而得到質量流量。 顯然,以質量流量表示的漩渦流量計,必須進行氣體組成變化帶來的密度變化的修正,同時工況變化,又增加一個由工作狀態折算到設計狀態的折算系數。這個折算系數是動態的,也就是溫度、壓力補償問題。經過以上分析得出以下結論:(1)無論測氣體或液體,若渦街流量計流量以工作狀態體積流量表示時,沒有密度及溫度、壓力補償問題。(2)無論測氣體、蒸汽或液體流量,以質量流量表示時,液體一般溫度變化范圍大,流體密度變化均需進行密度修正,對氣體過熱蒸汽還需進行溫度、壓力補償。(3)以標準體積流量表示時,流量計必須進行溫度、壓力補償,無需進行氣體密度補償。智能電磁流量計測量精度不受流體密度、粘度、溫度、壓力和電導率變化的影響,傳感器感應電壓信號與平均流速呈線性關系,因此測量精度高。測量管道內無阻流件,因此沒有附加的壓力損失;測量管道內無可動部件,因此傳感器壽命極長。只有當滿管時才能獲得準確的測量,避免以下安裝位置:1.管道高點安裝(易聚集氣泡)2.直接安裝在一根向下的管線的敞開出口前。3.智能電磁流量計注意不要在泵的入口側安裝流量管,以避免抽壓而造成的對流量管襯里的破壞.當使用往復、橫膈膜或柱塞泵時需要在安裝脈沖節氣閥.4.當向下管道長度超過5m時,在傳感器后安裝一個虹吸管或一個放氣閥。以避免低壓而可能造成的對測量管襯里的破壞。保證滿管,減少含氣量?! “惭b方位通常分為垂直安裝和水平安裝: 安裝方位:適宜的方位可幫助避免氣體的累積和測量管內的殘渣存積?! 〈怪卑惭b;這種方位對易自排空管道系統很理想,并可不加空管檢測電極?! ∷桨惭b:測量電極平面必須水平,這樣可以防止由于夾帶的氣泡而產生的電極短時間絕緣。注意:空管檢測功能僅當測量裝置為水平安裝及變送器外殼向上時能正確工作。如果振動非常劇烈,應將傳感器和變送器分開安裝?! 』?,支撐:如果公稱直徑為DN≥350,在能忍受足夠負載的基座上安裝變送器。注意不允許利用外框承住傳感器的重量。這會使外框變形并破壞內部勵磁線圈。如果可能,安裝傳感器避免例如閥門,三通,彎頭等組件?! ”WC以下所需的進口和出口直管段以確保測量精度:入口長度>10×DN出口長度>5×DN傳感器及變送器接地傳感器處于管道中心位置 智能電磁流量計接地:傳感器及介質必須有相同的電勢用來保證測量精度及避免電極地腐蝕破壞。等電勢通過在傳感器內裝地參考電極保證。如果介質在無襯里并接地地金屬管中流動,它可通過連接到變送器外殼而滿足接地要求。對于分離型地接地同上一樣。電磁流量計在運行中使用過程中,偶爾出現波動大,信號弱或突然下降等情況時原因1.由于水煤漿在磨制過程中,產生的鐵磁性物質,隨流過電磁流量計時,吸附于電極表面使其絕緣變壞或被短路,造成信號送不出去,而導致測量誤差. 處理方法;在平時停車檢修期間要認真檢查,發現測量導管內壁有沉積的污垢,應及時清洗和擦拭電極,測量導管襯里如果出現鼓包現象,應及時更換,檢查信號插座,如果有腐蝕,應予以清理或更換.原因2.在水煤漿測量過程中,煤漿泵出口壓力的不穩定和較大波動,對電磁流量計的在線測量也會造成較大的影響,尤其在低流速狀態和煤漿泵臟物堵塞等因素同時存在時,水煤漿流場變化波動且不穩定,流體脈動大,使電磁流量計測量信號不穩定. 處理方法:我公司常用做法是將電磁流量計安裝在氣化爐框架頂部,延長流量計的前直管段,以解決煤漿泵加壓泵工作時造成的脈動.原因3.在測量過程中,煤漿中的固體顆粒(或液體中氣泡)摩擦電極表面,電極表面電化學電勢突然變化,輸出信號流量將出現尖峰脈沖狀噪聲,如果兩個電極材質、結構表面狀態存在差異,所產生的共模干擾,流量信號送到轉換器差分放大器輸入端放大,于是就出現了流量計輸出信號的大幅波動. 處理方法:應盡量控制煤漿顆粒在50μm-55μm,減小顆粒噪聲對測量穩定性的影響.同時應在工藝控制水煤漿的濃度比例,使其均勻穩定.原因4.電磁流量計的信號比較弱,在滿量程時只有2.5~8mv,流量很小時,輸出只有幾微伏,外界略有干擾,就會影響儀表精度. 處理方法:查看檢測器的測量管、外殼、屏蔽線以及轉換器、二次儀表是否可靠接地,接地電阻是否小于10歐,電纜屏蔽層是否有損壞.德國VSEAHM03流量計供應渦街流量計由殼體、漩渦發生體和放大器組成.一種典型的結構如圖4所示,殼體內插入柱體,由其產生的渦街信號可用各種檢測方式檢出,經放大器放大后,輸出脈沖信號. 渦街流量計是一種無運動部件的流量計,按其原理分類屬于振蕩型流量計.同屬于這類流量計還有漩渦進動型流量計;振蕩射流型流量計.由于渦街流量計不含有運動部件及對流體沖刷敏感的部件,因而在使用過程中,可靠性高,使用壽命長,并具有一般節流式流量計的優點,精確度穩定,再現性好.在大批量生產和工藝穩定的條件下,可以采用“干校驗法”,即不必逐臺儀表進行實液標定,可根據結構尺寸直接確定儀表常數及儀表精度.渦街流量計是‘種數字式流量計,它輸出的脈沖信號的頻率與流量成線性關系,同時具有量程寬、重復性好.便于遠距離無精度損失的傳輸.此外儀表常數及精度不受介質的壓力、溫度、密度等變量的影響.一旦渦街流量計的結構確定.流體振蕩就服從的客觀規律,其振蕩頻率不能人為地改變,因而儀表常數及其變化規律是客觀的.1.量程選擇.當使用低量程的流量計時,儀表讀數偏差會增加,而使用滿量程時,若參數值波動較大,則會使測量值偏低。2.差壓計零位,靜壓漂移,隨環境改變示值超差。3.差壓計讀數誤差的影響因素有:(1)雙波紋管差壓計安裝時其傾斜度超標或安裝不牢靠。(2)存在靜壓零位誤差。(3)波紋管受腐蝕或泄漏。(4)四連桿機構摩擦過大。(5)記錄筆在卡片上壓得過緊,墨水管緊使筆尖不能正常工作。(6)差壓計存在不規則的校驗特性,且為不可修正,或可能存在校準誤差。(7)記錄曲線為人為手動補描。(8)記錄卡片不規范,存在偏心引起流量計誤差。(9)時鐘走時不準。為了適應儀表網絡化的發展方向,在系統設計時我們要根據實際需要為電磁流量計配備合適的通信接口.在當今單片機系統的通信中,RS232和RS485標準總線應用最為廣泛,技術也最為成熟.RS232用來連接兩臺計算機(微處理器)之間的串口通信,當我們需要一個更長的距離或者比RS232更快的速度下進行傳輸的時候,RS485就是一個很好的解決辦法.另外,RS485連接不限于僅僅連接兩臺設備.根據距離,比特率和接口芯片,我們可以用單一導線連接最多256個節點.為了使電磁流量計的應用范圍更加廣泛,我們選用RS485標準總線來實現儀表和外部系統的通信. RS485是雙向、半雙工通信協議,允許多個驅動器和接收器掛接在總線上,其中每個驅動器都能夠脫離總線.該規范滿足所有RS422的要求,而且比RS422穩定性更強.具有更高的接收器輸入阻抗和更寬的共模范圍(-7V至+12V). 接收器輸入靈敏度為士200mV,這就意味著若要識別符號或間隔狀態,接收端電壓必須高于+200mV或低于-200mV.最小接收器輸入阻抗為12k,驅動器輸出電壓為±1.5V(最小值)、+5V(最大值). 驅動器能夠驅動32個單位負載,即允許總線上并聯32個12k的接收器.對于輸入阻抗更高的接收器,一條總線上允許連接的單位負載數也較高.RS485接收器可隨意組合,連接至同一總線,但要保證這些電路的實際并聯阻抗不高于32個單位負載(375). 采用典型的24AWG雙絞線時,驅動器負載阻抗的最大值為54,即32個單位負載并聯2個120終端匹配電阻.RS485已經成為POS、工業以及電信應用中的最佳選擇.較寬的共模范圍可實現長電纜、嘈雜環境(如工廠車間)下的數據傳輸.更高的接收器輸入阻抗還允許總線上掛接更多器件. 因RS485接口具有良好的抗噪聲干擾性,長的傳輸距離和多站能力等上述優點就使其成為首選的串行接口.因為RS485接口組成的半雙工網絡一般只需二根連線,所以RS485接口均采用屏蔽雙絞線傳輸.RS485接口連接器采用DB-9的9芯插頭座,與智能終端RS485接口采用DB.9(孔),與鍵盤連接的鍵盤接口RS485采用DB.9(針). 通信接口電路如圖3.13所示,我們選用MAX485作為系統的通信接口芯片.MAX485是MAXIM公司推出的支持RS485協議的低功耗收發器,它的驅動器擺率不受限制,可以實現最高2.5Mbps的傳輸速率.它是用于RS.485通信的半雙工低功率收發器件,包含一個驅動器和一個接收器,具有輸入接收器和輸出驅動器使能管腳.使用一個半雙工連接的難點就是控制每個驅動器在什么時候被啟用,或者處于激活狀態.當一個驅動器在傳輸的時候,必須直到它完成傳輸都保持被啟用狀態,然后在一個應答節點開始響應之前切換到禁用狀態.MAX485的控制端RE和DE短接,這樣用一個信號可以控制兩種狀態:接收和發送.RE和DE為“l”時,發送端接通,數據經DI腳后,變成傳送的信號送到傳輸線.RE和DE為“0”時傳輸線上的信號經MAX485,當處于發送狀態時,數據信號經發送端DI,在輸出端A和B上交替出現高電平:當處于接收狀態時,A和B上交替的高電平信號經MAX485轉換成高低電平信號經RO輸出.在電磁流量計傳輸過程中,交替的高電平保證通信傳輸回路中始終有電流,能實現可靠通信.德國VSEAHM03流量計供應 考慮到容積式流量測量裝置結構較復雜,安裝維護和校準不方便,有必要在滿足精度和抗震.性能要求的前提下,采用安裝和維護方便的其他形式流量測量儀表。熱式氣體質量流量計已在氣體流量測量領域獲得了成功的應用,具有無可動部件、壓損小及量程比寬等特點,例如在核電廠的通風系統中,已成功地替代皮托管成為重要的測量方式。但在液位流量測量領域,熱式質量流量計的應用仍具有局限性。 由式(2)可知,熱絲的熱散失率與流體的熱導率、比熱容、流速和密度有關。相對于通風系統中的空氣來說,水是-種具有較大比熱容、較大密度和熱導率的介質。在相同的流速下,水帶走的熱量遠大于空氣,對于以恒定功率加熱熱端鉑電阻的恒功率型熱式質量流量計,為了適應水流量的測量,加熱電路會采用比較高的加熱功率為熱端鉑電阻進行加熱;對于恒溫差型的熱式質量流量計,為了維持兩個鉑電阻之間恒定的溫差,加熱電路同樣會處于比較高的加熱功率狀態下,且加熱功率將隨水流量的增大而增大。因而,無論是恒功率型還是恒溫差型,加熱功率的提高會對流量計的安全性和壽命有很大的影響,也使其應用環境造成一定的局限性。而恒比率式流量計由于通過調節施加在熱端熱電阻上的加熱電流,使熱端熱電阻的阻值與冷端熱電阻的阻值成一恒定比率,因而同恒溫差式流量計相比,在測量相同流速流體的情況下,恒比率式流量計熱端鉑電阻的加熱電流要小于恒溫差式,因而其加熱功率不會過高而產生儀表安全性和使用壽命方面的不利影響。對于主泵第三級密封泄漏流這種微小流量的測量,相對于恒功率式和恒溫差式,恒比率式熱式質量流量計具有更好的應用價值,然而對于較大液體流量的測量則并不適用。恒比率式流量計的熱端鉑電阻加熱電流Ih與介質質量流量m的關系為: 式中Ap-一流體流經管道的截面積; As一傳感器參與熱交換部分的表面積; C1、C2一通過校準確定的常數; d一熱電阻傳感器直徑; k一流體熱導率; Ls一傳感器損耗能量的因數; n一校準過程中通過回歸確定的指數; Pr一流體的普朗特數; Rc一冷端鉑電阻阻值; Rco一冷端鉑電阻在0℃時的阻值; RH一熱端鉑電阻阻值; RH0一熱端鉑電阻在0C時的阻值;, r一恒比率參數(自加熱系數),r= a一鉑電阻的參數。 1.基本性能 熱式質量流量計作為一種直接測量質量流量的智能型流量儀表,具有結構簡單、體積小、數字化程度高及安裝方便等優點。熱式質量流量計的.測量精度一般約為±1%,重復性為±0.2%;量程比寬可達100:1,最高可達1000:1;在-40~60℃的環境溫度下可正常工作;可耐受3MPa或更高的管道壓力;允許介質工作溫度-70~400℃;允許被測液體的流速為0~4m/s;支持HART協議。另外,具有壓損小、直管段要求低和允許動態修正的特點,其響應時間較長,未采用特殊設計時可達幾秒。熱式質量流量計具有一體式和分體式兩種.結構,在累積輻照劑量較大區域,可采用分體式流量計進行測量,信號處理部分布置于累積輻照劑量較小區域。 主泵第三級密封泄漏流正常工況下在5L/h左右,達到50L/h時報警,不用于過程控制。在電廠正常運行工況下,測點所在區域的環境溫度約為50℃以下,工作壓力小于0.6MPa,工作溫度小于100℃,要求測量范圍的量程比約為30:1,屬于非1E級測點。因此,就測量要求而言,熱式質量流量計適用于主泵第三級密封泄漏流量的測量。 2.抗震性能 由于主泵第三級密封泄漏流測點位于安全殼內,周圍存在1E級儀表和核級管道,盡管測點本身不需要在設計基準事件工況下執行功能,但不應對其他需要執行功能的設備或儀表造成損害,因而用于該測點的儀表應滿足抗震要求,在SSE地震載荷下,滿足結構完整性的要求,避免放射性物質經儀表破口向環境釋放以及對周圍1E級儀表和核級設備產生潛在危害。 熱式質量流量計結構簡單,除進行抗震試驗外,抗震分析亦可用于分析其抗震性能。在抗震分析中,需要重點對薄弱部位進行應力分析,通常包括傳感器與管道相交的節點處、螺紋連接處及法蘭連接處等位置。 對某一型號熱式氣體質量流量計進行抗震分析,取三向峰值加速度為6g。通過應力分析表明,流量計的第一-階自振頻率大于33Hz,在地震載荷作用下,薄弱部位的計算應力值均小于規定的應力限值,從而認為其在SSE地震載荷下,結構完整性可以得到保證。 3.耐輻照性能 因主泵第三級密封泄漏流測點位于安全殼內,在電廠正常運行工況下,探頭所處的環境具有一定的電離輻射存在。因而,用于該測點的儀表應能經受--定的累積輻照劑量而測量結果仍在要求的測量精度范圍內。目前,對于儀表的耐輻照性能,主要采用試驗法進行驗證。 對某一型號分體式熱式質量流量計探頭進行耐輻照試驗,輻射源采用鈷-60,試驗時間持續40h以上,累積輻照劑量約2x104Gy,輻照后進行功能試驗,流量計的輸出維持在測量精度范圍內,表明該型流量計可以經受若干年的累積輻照劑量而不損壞。 4.安裝 為便于安裝和維護,流量計可采用法蘭-法蘭連接的形式。在一般情況下,為了滿足測量精度,熱式質量流量計對于前后直管段的要求較高,部分型號的流量計要求的直管段長度可達到前15D、后5D以上。但由于流量計允許動態修正,經過標定和修正后,可降低熱式質量流量計的前后直管段要求。對于主泵第三級密封泄漏流的測量,熱式質量流量計可滿足安裝和維護要求。用于動流測量的電磁流量計,通常在下列三個方面須作特殊設計,并在投運時作適當的調試.1.激勵頻率可調,以便得到與動頻率相適應的激勵頻率.太和太低都是不利的.2.電磁流量計的模擬信號處理部分應防止動峰值到來時進入飽和狀態.動流的動峰值有時得出奇,如果峰值出現時,電磁流量計的流量信號輸入通道進入飽和狀態,就如同峰值被消除,必將導致儀表示值偏低.3.為了讀出平均值,應對顯示部分作平滑處理.由于電磁流量計的測量部分能快速響應動流流量的變化,忠實地反映實際流量,但是顯示部分如果也如實地顯示實際流量值,勢必導致顯示值上下大幅度跳動,難以讀數,所以,顯示應取段時間的平均值.其實現方法通常是串入慣性環節,選定合適的時間常數后,儀表就能穩定顯示。但若時間常數選得太大,則在平均流量變化時,顯示部分響應遲鈍,為觀察帶來錯覺.動流流量測量方法有三種:a.用響應快的電磁流量計;b.用適當的方法將動衰減到足夠小的幅值,然后用普通流量計進行測量;c.對在動流狀態下測得的流量值進行誤差校正. 有的系統中,b c兩種方法需結合起來才能實現測量,這是因為動幅值大,出估算公式的適用范圍,若僅用阻尼方法,衰減后的動幅值又未能進入穩定流范圍。 當前,在國內關于蒸汽測量方面存在不少誤區,很多用戶往往認為購買了高品質的流量計就可以得到準確的計量結果。蒸汽的計量不同于其它流體如水、空氣等介質,在實際測量中影響其精確測量的因素較多,經常會出現流量計本身檢定合格,而實際卻感覺計量“不準”的現象。影響孔板流量計對蒸汽流量準確計量的因素主要有以下三個方面。1.上下游直管段不足 對于傳統的渦街或孔板流量計,其前后安裝直管段要求分別約為20D和5D。如果上下游直管段不足,則會導致流體未充分發展,存在旋渦和流速分布剖面畸變。流速剖面畸變通常由管道局部阻礙(如閥門)或彎管所造成,而旋渦普遍是由兩個或兩個以上空間(立體)彎管所引起的。上下游直管段不足可以通過安裝流動調整器來調整,最簡單有效的辦法是采用對上下游直管段要求較低的流量計。2.蒸汽的密度補償不正確 為了正確計量蒸汽的質量流量,必須考慮蒸汽壓力和溫度的變化,即蒸汽密度補償。不同類型的流量計受密度變化影響的方式不同。渦街流量計的信號輸出只和流速有關,而和介質的密度、壓力和溫度無關,差壓式流量計其質量流量與流量計的幾何外型、差壓平方根和密度平方根有關。①補償精確度的差異。測溫對補償精確度影響較大。;如采用相同精度等級的溫度和壓力感應器,測溫誤差引起的密度差異要大于測壓誤差。②壓力測量影響因素。在蒸汽壓力的測量中,由于引壓管內冷凝水的重力作用會使壓力變送器測量到的壓力同蒸汽壓力之間出現一定的差值。測壓誤差如果不予以校正,則會影響蒸汽密度的計算,引起流量計量的誤差。對于上述現象,可在二次表(流量計算機內)進行零點遷移,既簡單又準確。3.蒸汽干度的影響 目前,用于測量蒸汽流量的孔板流量計大部分為體積流量計,首先測得體積流量,然后通過蒸汽的密度計算質量流量,也就是假定蒸汽為完全干燥。但是,蒸汽并非完全干燥,如果不考慮蒸汽干度的影響,得出的數據會低于實際的流量。因此流量計的二次儀表(流量計算機)應該具有設置飽和蒸汽干度的功能。但在實際工況確定蒸汽的干度也很困難。如果能夠改進蒸汽流量計入口處的蒸汽品質,則能改進孔板流量計的測量精度。
您如果需要德國VSEAHM03流量計供應的產品,請點擊右側的聯系方式聯系我們,期待您的來電