德國VSEAPE4-UV0S/X流量計現貨同時我們還經營:1.上電前,再次檢查流量計供電及信號接線,并確認接線端子,螺絲擰緊,沒有松動現象。2.電磁流量計上電,檢查二次表液晶屏數值顯示是否正常。然后按照第四節進行參數設置。3.參數設置完成后,開始時管道里并沒有污水流過,這時流量計二次表應該顯示空管報警,同時顯示設備位號、量程、瞬時流量為0、量程進度條為空、累積量為0。4.檢查自控系統信號是否與流量計二次表顯示一致。5.檢查管道、閥門及其它裝置是否具備進水條件.如果具備進水條件,通知上游來水。按照3個流量值進行標定:50m³/h、100m³/h、150m³/h。上游來水通過調整外派水泵頻率,并在出水流量計上盡量接近要求流量值,然后等進水穩定確認無氣泡后,開始檢查數值是否準確,如果數值基本符合并在工藝要求誤差允許范圍內,則標定完成.如果誤差較大,則需要查明原因:●管道是否有泄露●流量計一次表安裝是否有問題●流量計接地是否良好●周圍是否有干擾源●一次表與二次表接線是否緊固●信號線屏蔽是否接地●確認一次表與二次表是否配套●重新確認參數設置,并進行微調,比如小信號切除等6.設置完成后,根據裝置實際情況,將流量計投入使用。在投入使用前將調試過程中產生的累積量清零,確保自控系統累積量與現場二次表頭顯示一致,方便后期核對數據。電磁流量計等節點設備和站內PC機間的通信采用異步串行通訊控制規程,并采用地址位喚醒握手協議.因此在協議中規定了傳地址和傳數據兩種不同的幀格式,如圖4.4所示.地址幀和數據幀都有11位,其中第l位和最后l位相同,分別為起始位和停止位,緊接起始位的是8位數據位,第9位為標志位,用來區分所發送/接受的幀信息是地址幀還是數據幀.第9位為1時,表示PC機發送/接受的是“地址幀":第9位為0時,表示主機發送/接受的是"數據幀".命令幀與校驗和的發送格式與數據幀相同,因此可由數據幀演化得到.超聲波流量計根據聲道布置形式可以分為單聲道超聲波流量計和多聲道超聲波流量計。單聲道超聲波流量計在測量管道上只安裝一對超聲波換能器,多聲道超聲波流量計則在測量管道上安裝多對超聲波換能器,包含多個獨立的超聲波傳播路徑。多聲道超聲波流量計對于流場的適應能力更強,可以提高流量計的測量精度;然而單聲道超聲波流量計在小管徑場合應用更為廣泛,而且通過反射鏡的應用單聲道超聲波流量計的聲道布置形式越來越復雜,測量精度也隨之提高。根據聲道的傳播方式,常用的單聲道超聲波流量計主要有Z型流量計,U型流量計,V型流量計,N型流量計和三角型流量計,不同傳播類型的單聲道超聲波流量計聲道示意圖如圖4-1所示,其中紅色虛線表示聲波傳播路徑?! 《嗦暤莱暡髁坑嫴捎脭抵捣e分的方法提高流量修正系數的精度,可以解決單聲道超聲波流量計測量不確定度誤差大的問題。多聲道超聲波流量計通常采用Gauss積分方法計算式(2-7)中各聲道位置ri/R和相應的權重系數wi。在相同采樣點數、節數自由的情況下,Gauss 型數值積分方法相對于辛普森公式和梯形公式等插值型積分方法計算精度更高。對于圓形測量管道的超聲波流量計中聲道位置和相應權重系數的計算一般采用Gauss-Jacobi積分方法。按照 Gauss-Jacobi 積分方法的零點確定各聲道高度,按積分方法中的權重系數計算聲道權重系數?! 嶋H中各聲道上速度分布與理想的代數多項式表示的流速分布差異很大,特別是無法體現管壁處流速為零的特性,導致流量的積分結果偏高,影響流量計的測量精度。為了使計算結果更加接近于圓形管道內液體充分發展的真實值,提出了采用最佳圓截面算法(OWICS)計算聲道位置ri/R和權重系數wi的方法,最佳圓截面算法其實是基于正交多項式的 Gauss 積分方法。Gauss-Jacobi和OWICS積分方法計算各聲道位置和權重系數如表4-1所示.1.被測介質電導率 電磁流量計測量的流體必須是導電的,一般只要電導率超過閾值,即使變化也不影響測量值,但低于閾值將會增大測量誤差;通常要求液體電導率不小于5μS/cm,去離子水電導率不小于20μS/cm。2.被測介質溫度 電磁流量計一般只能用于工藝介質溫度不高于180℃的場合。選型時,要根據被測工藝介質的溫度范圍,選擇測量管內襯材料及傳感器線圈的漆包線的耐溫等級。常用測量管襯里材料有聚四氟乙烯(PTFE),適用溫度范圍-40~+180℃;氯丁橡膠(Neoprene),適用溫度<65℃;聚氨酯橡膠(Polyurethane),適用溫度<65℃;3.當被測液體為酸、堿、鹽等高腐蝕性介質時 因為電磁流量計僅測量管襯里和電極與被測介質接觸,所以只要選好這兩者的材質即可。耐酸、堿等強腐蝕性介質的襯里常選用聚四氟乙烯(PTFE),耐磨損類如礦漿、結晶類介質的襯里可選用聚氨酯橡膠(Polyurethane)。對于電極材質的選,擇,一般可查有關防腐蝕手冊[2],對于混酸等成份復雜的介質,應做掛片試驗。4.當被測液體為臟污流(兩相,漿液等)介質時(1)當介質含有固體顆粒時,水平安裝易使下半部內襯及電極磨損嚴重,這時選用垂直安裝較好;襯里要選用高耐磨性材料,如陶瓷或聚氨酯橡膠;電極則采取--些結構措施以防磨損漏液。(2)測量會在管壁附著和沉淀的物質的流體時,應注意電極的污染??蛇x用刮刀式、可更換式。管壁的附著則可用提高流速以起到自清洗作用,或采取比較方便易清洗管道的連接方法。(3)含有非磁性顆?;蚶w維的固液兩相流時,如漿液擦過電極表面會產生尖峰噪聲,使信號不穩,可選用市電交流激磁或雙頻激磁儀表。5.工藝介質的流速 儀表口徑是根據管道內平均流速而定的,通常選用與管道相同的口徑或略小些。一般工業輸水管道經濟流速為1.5~3m/s,易粘附沉積結垢物質則提高到3~4m/'s或更高,礦漿等磨蝕性強的為2~3m/s。電磁流量計的液體流速范圍可在1~10m/s之間選用。原理上,上限流速并沒有限制,滿度流量的流速下限一般為1m/s,有些產品為0.5m/s,低于此流速,從測量準確度出發應改用小管徑,以異徑管連接到管道。但加裝異徑管要注意壓力損失的問題。圖1為流量計口徑、流速與流量關系的曲線圖,計算儀表口徑時可參照。6.大口徑時電磁流量計的選擇 電磁流量計按安裝形式可分為管道式和探頭式。一般優先選用管道式電磁流量計;當工藝管徑較大且考慮設備費用時,或安裝時不允許管道停流的情況下,可選用探頭式電磁流量計(精度可達0.5級)。(1)探頭式可裝配球閥,可在管道不停流情況下拆、裝,利于儀表的在線安裝和維護。(2)探頭插入深度只需很短,對管道阻力小。--般在直管段足夠長時,采用平均流速點測量法,這種方法的測量精度基.本不受雷諾系數變化的影響,探頭的插人深度僅為R=0.121D;當直管段較短時,一般采用中心流速點測量法,插入深度R=0.5D(其中D為管道直徑)。7.工藝管道材質 若連接儀表的管道是(相對于被測介質)金屬導電性的,不需要接電環,若是絕緣性的,則要用接地環,可用普通型,它的材質應與被測介質的腐蝕性相適應。若被測介質是磨損性的,則宜選用帶頸接地環,以保護進、出口端的襯里,延長使用壽命。8.安裝儀表的工藝管道段的敷設位置 電磁流量計的安裝形式可分為三種:一體型、分離型和潛水分離型(IP68)。一般情況選用一體型,它將流量計的傳感部分和轉換部分(表頭)裝于一體,便于安裝使用;當管道敷設的位置較高不便觀察或安裝在環境差的場合,可采用分離型,分離長度一般不超過30m;當傳感器需要安裝在井下、水下的被測現場管道上時,需要選用潛水分離型。1、孔板流量計計量天然氣的優勢分析1)孔板流量計的結構組成比較簡單,性能穩定可靠,節流裝置運行穩定安全,整體使用壽命較長,且成本較為低廉,綜合效益優勢突出,校驗檢測質量合格。2)孔板流量計能夠使區域性液體流動速度增加,降低靜壓力標準,產生壓差,通過對壓差進行測量的方式來評估待測定區域內流體流量的大小,故而測量精度較高,誤差小。3)孔板流量計生產制造過程當中的相關檢測件以及差壓顯示儀表能夠由不同的生產廠家進行生產制造與供貨,具有專業化、規?;a的價值與潛力。4)由于孔板流量計在作用于天然氣計量的過程當中,標準節流件為全世界通用,且有大量的國家、國際、行業標準作為支持,實際應用中不需要進行實流校準,操作步驟簡單,質量控制可靠,且數據精度有所保障。2、孔板流量計計量天然氣的誤差消除1)要求從設計安裝的角度入手,重視對孔板流量計作業質量的嚴格控制。當前我國存在大量標準的孔板流量計安裝操作規范,當中對孔板流量計在安裝過程當中的各項技術指標進行了詳細、精確的規定。同時,安裝期間還要求根據孔板前阻力件的結構形式,對應配置長度符合要求的直管段,工程實踐中同時要求,直管段長度應當挖制在≥30d單位以上。若受客觀環境條件影響,無法滿足這一一要求,則需要在直管段上通過增設整流器裝置的方式縮短安裝長度。安裝期間,還要求對孔板流量計入口端相對于管道線的方位進行控制,垂直角度90.0°進行控制,偏差應當嚴格控制在±1.0°范圍之內。2)要求從應用維護的角度入手,重視對脈動流的消除與控制。為了最大限度的消除孔板流量計作業期間的脈動流,需要將天然氣當中的水分最大限度的從管線中脫出出來,具體的技 術措施為:管道低處安裝分液器,消除管線內部所累積的積液。與此同時,還需要在確??装辶髁坑嬜陨碛嬃啃阅艿幕A之上,合理控制測量管道內部內徑參數,同時合理提高管道差壓取值標準。除此以外,還可以在測量點以前的入口端增設調壓閥部件,使孔板流量計計量期間的輸出壓力能夠取值比較穩定。相同類型的方法還有:將緩沖罐加裝在測量管道以前位置,使氣體能量能夠得到及時的儲存與釋放,達到對抗差壓波動的目的,避免天然氣計量作業期間,脈動現象對計量精度所產生的不良影響。渦輪流量計利用置于流體中的葉輪的旋轉角速度與流體流速成比例的關系,通過測量葉輪的轉速來反映通過管道的流體體積流量大小,是流量儀表中比較成熟的高準確度儀表之一?! ×髁坑媰扔薪涍^精密加工的葉片,它與一套減速齒輪和軸承一起構成測量組件,支撐渦輪的兩個不銹鋼自潤滑軸承,保證該組件有較長的使用壽命。流量計亦可選用外部潤滑油泵潤滑軸承,但注意不能過量?! ×髁坑嬄短彀惭b,由于流量計大部分是電子顯示,表頭內有電路板,長期露天放置,容易造成電路板損壞受潮,液晶屏不顯示,或者燒壞電路板。建議安裝計量儀表防護裝置?! u輪流量計在安裝過程中,不能敲打表具。流量計受硬力沖擊,導致表具損壞。安裝流量計前,一定要吹掃,吹掃過程中一定不能帶著表具,管道中的焊渣容易打壞渦輪流量計的葉輪,造成表具不計量或者計量不準確?! 榱吮WC流量計檢修時不影響介質的正常使用,在流量計的前后管道上應安裝切斷閥門(截止閥),同時應設置旁通管道。流量控制閥要安裝在流量計的下游,流量計使用時上游所裝的截止閥必須全開,避免上游部分的流體產生不穩流現象?! u輪流量計在使用前一定要加潤滑油,但是不能加多,在燃氣氣質并不是太干凈的環境中,潤滑油過多容易使氣質中的雜質粘附在卡箍式渦輪流量計的葉輪上,從而造成計量不準確,時間長了,容易磨損表具。1.根據各檢定點每次檢定時標準器測得的實際體積,通過測量標準器和流量計的溫度、壓力、壓縮因子等參數.計算出各檢定點每次檢定時標準器換算到流量計的累積流量和各檢定點每次檢定時流量計顯示的累積流量,計算流量計各檢定點單次檢定的相對示值誤差.2.對于某種型號的電磁流量計,需要計算被檢流量計各流量點單次檢定的引用誤差.3.當標準器顯示為累積流量時,可根據各檢定點每次檢定時間,計算流量計各流量點單次檢定的瞬時流量相對示值誤差.4.使用質量法裝置檢定時,需測出液體的密度,并考慮密度的空氣浮力影響,把電子秤顯示的質量換算到實際體積.5.計算流量計各檢定點的相對示值誤差,取流量計高區和低區各檢定點相對示值誤差中最大值作為流量計的相對示值誤差.6.對于某種型號電磁流量計,需要計算被檢流量計各流量點單次檢定的引用誤差。取流量計各流量點的最大值為引用誤差的誤差。7.帶有脈沖輸出的流量計(如渦街流量計或渦輪流量計)檢定后需計算各檢定流量點的系數和K系數的相對示值誤差. 當前,在國內關于蒸汽測量方面存在不少誤區,很多用戶往往認為購買了高品質的流量計就可以得到準確的計量結果。蒸汽的計量不同于其它流體如水、空氣等介質,在實際測量中影響其精確測量的因素較多,經常會出現流量計本身檢定合格,而實際卻感覺計量“不準”的現象。影響孔板流量計對蒸汽流量準確計量的因素主要有以下三個方面。1.上下游直管段不足 對于傳統的渦街或孔板流量計,其前后安裝直管段要求分別約為20D和5D。如果上下游直管段不足,則會導致流體未充分發展,存在旋渦和流速分布剖面畸變。流速剖面畸變通常由管道局部阻礙(如閥門)或彎管所造成,而旋渦普遍是由兩個或兩個以上空間(立體)彎管所引起的。上下游直管段不足可以通過安裝流動調整器來調整,最簡單有效的辦法是采用對上下游直管段要求較低的流量計。2.蒸汽的密度補償不正確 為了正確計量蒸汽的質量流量,必須考慮蒸汽壓力和溫度的變化,即蒸汽密度補償。不同類型的流量計受密度變化影響的方式不同。渦街流量計的信號輸出只和流速有關,而和介質的密度、壓力和溫度無關,差壓式流量計其質量流量與流量計的幾何外型、差壓平方根和密度平方根有關。①補償精確度的差異。測溫對補償精確度影響較大。;如采用相同精度等級的溫度和壓力感應器,測溫誤差引起的密度差異要大于測壓誤差。②壓力測量影響因素。在蒸汽壓力的測量中,由于引壓管內冷凝水的重力作用會使壓力變送器測量到的壓力同蒸汽壓力之間出現一定的差值。測壓誤差如果不予以校正,則會影響蒸汽密度的計算,引起流量計量的誤差。對于上述現象,可在二次表(流量計算機內)進行零點遷移,既簡單又準確。3.蒸汽干度的影響 目前,用于測量蒸汽流量的孔板流量計大部分為體積流量計,首先測得體積流量,然后通過蒸汽的密度計算質量流量,也就是假定蒸汽為完全干燥。但是,蒸汽并非完全干燥,如果不考慮蒸汽干度的影響,得出的數據會低于實際的流量。因此流量計的二次儀表(流量計算機)應該具有設置飽和蒸汽干度的功能。但在實際工況確定蒸汽的干度也很困難。如果能夠改進蒸汽流量計入口處的蒸汽品質,則能改進孔板流量計的測量精度。流量計選型時應考慮很多因素,如儀表性能流體特性、安裝要求環境條件以及價格因素等。其中對計量對象即燃氣的確切了解非常重要,這往往需要選型設計人員和計量管理人員進行深入細致的調查。(1)流量計性能方面:精確度.重復性.線性度、范圍度、壓力損失、上下限流量、信號傳輸特性.響應時間等;(2)流體特性方面:流體壓力、溫度、密度、粘度、潤滑性.化學性質磨蝕、腐蝕、結垢、臟污、氣體壓縮系數、等熵指數比熱容聲速、混相流、脈動流等;(3)安裝條件方面:管道布置方向、流動方向、流量計上下游直管段長度、管徑、維護空間、管道振動、接地、電源輔助設備(過濾、排污)等;(4)環境條件方面:環境溫度、濕度、安全性、電磁干擾、防爆等;(5)經濟因素方面:購置費、安裝費、維修費、校驗費.運行費(能耗)、使用期限、備品備件等。德國VSEAPE4-UV0S/X流量計現貨由金屬管浮子流量計的工作原理我們知道:流體的流量與浮子在錐管中的高度有關,因此要實現對流量的測量,實際上取決于對浮子位置的測量?! ”驹O計中采用美國公司生產的非接觸式角位移磁阻傳感器HMC1501代替傳統的接觸式角度傳感器,HMC1501可以測量從磁鐵發出的磁場的方向角?! ≡O計中將一條形磁鐵置于磁阻傳感器上方,令磁阻傳感器與錐管間距離為L,傳感器距錐管底部高度為H,如圖2.3所示?! ‘敻∽游挥诟叨菻處時,小磁鐵的轉角為0。當流量變化時,浮子上下移動,其內嵌磁鋼也隨之上下移動,此時,置于磁阻傳感器正上方的條形磁鐵受到磁場作用發生轉動,如圖2.4,轉動的角度即與浮子位置有關?! ∮缮蠄D可見當磁鐵轉過角度為θ時,金屬管浮子流量計浮子在錐管中的位置h=H+Ltgθ,則根據式1.9可得:為保證超聲波流量計流量測量精度,選擇測量點時要求選擇流體流場均勻的部分,一般應遵循下列原則:1、被測管道內流體必須是滿管。2、選擇被測管道的材質應均勻質密,易于超聲波傳播,如垂直管段(流體由下向上)或水平管段(整個管路中最低處為好)。3、安裝距離應選擇上游大于10倍直管徑,下游大于5倍直管徑(注:不同儀器要求的距離會有所不同,具體距離以使用的儀器說明書為準)以內無任何閥門、彎頭、變徑等均勻的直管段,測量點應充分遠離閥門、泵、高壓電、變頻器等干擾源。4、充分考慮管內結垢狀況,盡量選擇無結垢的管段進行測量。外夾式流量計傳感器安裝要點 時差式超聲波傳感器安裝方式有三種,分別是V法、Z法和W法,如圖3所示?! y量時采用何種安裝方式,儀器說明書均有規定,但在邊界范圍一般比較模糊。如TFX1020P時差式超聲波流量計:V型安裝法適用測量管徑25~400 ㎜,Z型安裝法適用測量管徑100~2540㎜,W型安裝法適用測量管徑65㎜以下小管。V型與Z型、V型與W型在適用測量管徑均有部分重疊,如遇此情況 則按下列原則選擇最佳安裝方式:V型安裝一般情況下是標準安裝方式,使用方便,測量準確。當被測管道很粗或由于被測流體濁度高、管道內壁有襯里或結垢太 厚,造成V型安裝信號弱,儀表不能正常工作時,選用Z型安裝。原因是使用Z型安裝時,超聲波在管道中直接傳輸,沒有折射,信號衰耗小。W型安裝適于小管, 通過延長超聲波傳輸距離的辦法來提高小管測量精度,如圖3(c),使用W型安裝時,超聲波束在管內折射三次,穿過流體四次。 流量傳感器安裝方式有兩種,分別是對稱安裝和同側安裝。對稱安裝適用于中小管徑(通常小于600㎜)管道和含懸浮顆?;驓馀葺^少的液體;同側安裝適用于各種管徑的管道和含懸浮顆?;驓馀葺^多的液體。外夾式超聲波流量計傳感器安裝要求1、剝凈測量點處附近保溫層和保護層,使用角磨砂輪機、銼、砂紙等工具將管道打磨至光亮平滑無蝕坑。要求:漆銹層磨凈,凸出物修平,避免局部凹 陷,光澤均勻,手感光滑圓潤。需要特別注意,打磨點要求與原管道有同樣的弧度,切忌將安裝點打磨成平面,用酒精或汽油等將此范圍擦凈,以利于傳感器粘接。2、在水平管段上,兩個傳感器必須安裝在管道軸面的水平方向上,并且在軸線水平位置±45°的范圍內安裝,以防止管內上部流體不滿、有氣泡或下部有沉淀等現象影響正常測量,如圖5所示。3、傳感器安裝處和管壁反射處必須避開接口和焊縫,如圖6所示。4、傳感器工作面與管壁之間保持有足夠的耦合劑,不能有空氣和固體顆粒,以保證耦合良好。熱式氣體質量流量計是流量計發展歷史的一次重大變革,使流量測量直接轉變為質量流量的測量.根據測量時熱式質量流量計所使用的流量測量元件的加工工藝的不同,常用的傳感器探頭可以分為:熱線熱式流量傳感器、熱敏電阻式傳感器、半導體集成電路式傳感器等. 熱式流量傳感器探頭對流體運動形態的影響較小,測量范圍大,響應性能也很好,但是,這種類型的傳感器探頭對機械強度要求較高、在傳感器材料選擇上受到較大的限制;同時,加熱溫度僅能達到400~500℃.此外,由于流體中的微小顆粒容易粘附到熱線上,抗污染腐蝕能力較差,易損壞使熱線的特性發生不穩定性變化,熱線一致性差,難以進行批量生產. 半導體式傳感器探頭是以單晶硅為基體,使用硅微機械加工而成的微橋結構.半導體式傳感器探頭多用于0~25mL/min 的小流量氣體的測量,在本課題中所需要測量的流量范圍較大,不能滿足使用要求.圖2-2是典型的半導體式傳感器探頭結構. 熱電阻式傳感器主要有兩個探頭:一個流量探頭(Rp),一個溫度探頭(Rtc).目前,市場上所使用的大部分熱式氣體質量流量計傳感器探頭主要是基準鉑電阻.工作的時候,兩個探頭以一定的機械結構固定于管道中,可以通過熱源探頭上電壓信號量或者加熱功率的改變來衡量流量的變化.工作中要求兩個傳感器探頭對流量的響應盡可能的快,且要保證散熱同步,傳感器探頭的靈敏度最高,這為傳感器探頭的設計增添了一定的難度. 如圖2-3鉑電阻的典型結構所示,鉑電阻在在管道內與流體進行熱交換的過程中,鉑電阻的表面和內部鉑絲之間存在熱阻,阻礙熱量的交換.因此,必須從鉑電阻元件的選擇和傳感器結構設計兩方面進行設計,盡量減小鉑電阻內部和表面的熱阻.如果熱阻較大,熱敏電阻表面和內部就會存在很高的溫度差高,出現流量探頭和溫度探頭已經達到恒定溫差的假象,會嚴重影響控制電路正常工作,使測量的結果與管道流量的實際狀況出現較大偏差,所以減小探頭的熱阻是設計熱電阻式傳感器的關鍵.容積式流量計主要用來測量不含固體雜質的高粘度液體,例如油類、冷凝液、樹脂和液態食品等粘稠流體的流璧,而且測量準確,精度可達士0.2%,而其他流量計很難測量高粘度介質的流量。橢圓齒輪流量計是最常用的一種容積式流量計.如圖3-13所示。1.工作原理 橢圓齒輪流量計的測量部分是由兩個互相嚙合的橢圓形齒輪A和B以及軸、殼體等組成。橢圓齒輪與殼體之間形成測量室。如圖3-14所示?! ‘敱粶y流體流經橢圓齒輪流量計時,由于要克服儀表阻力必然引起壓力損失,從而在其人口和出口之間產生壓力差 . 在此壓力差的作用下,產生作用力矩使橢圓齒輪連續轉動 . 由于 P1>P2,P1、P2共同作用產生的合力矩使A輪順時針轉動. 而B輪上的合力矩為零,此時A輪帶動 B 輪順時針轉動.A為主動輪.B為從動輪. 在圖3-14(b) 所示中間位置時,A輪和B輪都為主動輪.在圖3-14(c)所示位置時,A輪上的合力矩為零,而B輪上的合力矩最大.B 輪逆時針轉動,此時B為主動輪 .A 為從動輪。如此循環往復,將被測介質以橢圓齒輪與殼體之間的月牙形容積為單位,依次由進口排至出口。橢圓齒輪流量計旋轉一周排出的被測介質體積量是月牙形容積的 4 倍。橢圓齒輪流量計的體積流量Q為:Q=4nv2(3-7)式中:n為橢圓齒輪的旋轉速度;V2為橢圓齒輪與殼體間形成的月牙形測量室的容積。2.使用特點 橢圓齒輪流量計適用于潔凈的高粘液體的流量測量,其測量精度高,壓力損失小,安裝使用方便,可以不需要直管段。但被測介質中不能含有固體顆粒,更不能夾雜機械物,否則會引起齒輪磨損甚至損壞。所以為了保護流量計,必須加裝過濾器?! E圓齒輪流盤計在啟用或停運時,應緩慢開、關閥門,否則易損壞齒輪,另外,流量計的溫度變化不能太劇烈,否則會使齒輪卡死。渦街流量計利用伴隨漩渦分離的物理效應,可以采用熱敏、力敏元件或通過光、聲調制方法等來檢測漩渦分離頻率.至今用于檢測分離頻率的方法和采用的元件是多種多樣的,歸納起來有以下幾種典型方法:(1)熱敏元件檢測方法漩渦分離產生的交變環流所引起的整體表面速度脈動或者交變橫向流的頻率,用加熱的金屬絲、熱敏電阻器等進行檢測.(2)力敏元件檢測方法漩渦分離造成的交變差壓、交變升力或者交變升力引起的機械振動,用差動電容、電阻應變片、壓電晶體、壓電陶瓷等檢測.(3)電磁傳感器檢測方法漩渦的分離所引起的膜片或者梭球等的往復振動的頻率,用電磁傳感器檢測.(4)聲、光信號調制檢測方法利用聲束光束通過渦街時受到漩渦的調制,由接收聲強光強或相位的脈動頻率得到漩渦分離頻率. 由于渦街流量計是利用流體自身的規則振蕩來計量流量的,因而對流體的速度分向及流動噪聲,比較敏感,因此在應用過程中對管道安裝狀況要求較高.對L游不同形式的阻力件必須配置足夠長的滿足不同要求的直管段,以保證儀:菱的測量精度.表l給出了不同形式阻力件禍街流量計上游最短直管段. 在實際應用過程中,由于場地限制,有時不能提供足夠長的直管段,為保證渦街流量計的準確測量,縮短直管段長度,可在上游阻力件和儀表之間裝設整流器,使得不利于測量的流動狀態進行整理、疏導消除流場的畸變和附加漩.在應用中要求渦街流量計與管道法蘭連接使用的密封墊圈,不能突出管道內,以免造成測量誤差.壓電晶體的靈敏度高、體積小、線性范圍大、結構簡單、可靠性好、壽命長.因此,我們研究的智能渦街流量計系統采用力敏元件(壓電晶體)來檢測漩渦的頻率. 氣體渦輪流量計準確度等級為1.0級,在音速噴嘴法氣體流量標準裝置上檢測時出現絕大多數不合格的問題,而之前并未:出現類似情況,該品牌流量計的合格率很高,通過對基表的檢測與高頻脈沖輸出的檢測,二者誤差一致,且均為負誤差,儀表顯示與輸出均正常。表1為誤差最大的一臺氣體渦輪流量計高頻脈沖輸出誤差和基表機械顯示部分的誤差值。 通過對標準裝置的自檢,并未發現異常,裝置工作正常。為了保證檢測的可靠性,將該批儀表在.2000L鐘罩式氣體流量標準裝置上進行了復檢。音速噴嘴法氣體流量標準裝置與2000L鐘罩式氣體流量標準裝置的系統誤差在0.3%以內。通過復檢發現氣體渦輪流量計的示值誤差在不斷變化,重復性較差,隨著檢測時間的延長,示值誤差不斷減小,向正方向發展,考慮到音速噴嘴實驗室的環境溫度為10.5℃,鐘罩實驗室溫度為20.1℃,因此進行恒溫.后再進行試驗。恒溫后再次對氣體渦輪流量計進行檢測,表2為該臺氣體渦輪流量計的高頻輸出誤差。 通過表2可以發現在恒溫后的檢測結果誤差發生了較大的變化,重復性也較好,考慮到兩套裝置的系統誤差不超過0.3%,但實際檢測結果最大誤差偏移達到了2.30%,如此之大的偏移量并不是標準裝置所引起的。將該臺氣體渦輪流量計馬上拿到音速噴嘴氣體流量標準裝置上進行復測,所用噴嘴未改變,檢測結果見表3。 從表3可以發現在沒有對儀表經過任何改動的情況下,在同樣的裝置下,儀表的示值誤差合格,且和之前在裝置上檢測的誤差發生了較大的偏移。通過分析實驗中各個影響因素,發現變化較大的只有溫度,為了確認影響因素為溫度,將該流量計在音速噴嘴實驗室10.5℃的環境溫度下恒溫,恒溫后再進行實驗,檢測結果見表4。 通過恒溫后的氣體渦輪流量計的示值誤差與最開始檢測的誤差相接近,說明溫度變化對儀表的誤差產生了較大的影響。通過對送檢用戶的詢問,由于用戶是外地送檢,出發較早,且送檢車輛空間有限,所以在送檢前一天晚上就將部分儀表的外包裝拆掉,并將表裝車,放置在室外,第二天早起送檢,雖然在檢測之前進行了短時間恒溫,但表體溫度仍然較低。德國VSEAPE4-UV0S/X流量計現貨電磁流量計中通常采用兩類基本的勵磁波形,一種是方波,另一種是正弦波。在正弦波勵磁模式下,可以有效的降低流體介質對電極的極化作用,能直接波。在正弦波勵磁模式下,可以有效的降低流體介質對電極的極化作用,能直接測量管道產生巨大的渦流損耗和磁滯損耗,同時也給測量帶來由電磁感應引起的同相和正交干擾。在方波勵磁模式下,由于電極會出現極化現象,導致采集的感應電壓信號不夠準確。方波勵磁模式中,在測量非導電液體時,相對較高的勵磁頻率,比如10Hz到200Hz,可以用來獲得好的動態特性或者獲得合理的信噪比,但是這種勵磁方式有一個嚴重的問題,其變壓器效應會引起流量計的零點漂移并影響測量精度?! 榱吮苊庖陨蠘O化現象和變壓器效應,減少干擾,本文研究中采用了一種三值方波勵磁方式,如圖4-5所示,線圈的勵磁信號有正、零和負三種值?! ”疚牟捎霉虘B繼電器和直流電源的方式產生三值方波勵磁電壓,其結構如圖4-6所示?! ≡谠撾姶帕髁坑媱畲欧桨钢?,使用LabJackU12控制輸出三值方波的模擬量電壓信號,通過4個固態繼電器組成的開關系統,直接作用到勵磁線圈上。
您如果需要德國VSEAPE4-UV0S/X流量計現貨的產品,請點擊右側的聯系方式聯系我們,期待您的來電